Torsion points in families of Drinfeld modules
Acta Arithmetica, Tome 161 (2013) no. 3, pp. 219-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varPhi^\lambda$ be an algebraic family of Drinfeld modules defined over a field $K$ of characteristic $p$, and let ${\bf a},{\bf b}\in K[\lambda]$. Assume that neither ${\bf a}(\lambda)$ nor ${\bf b}(\lambda)$ is a torsion point for $\varPhi^{\lambda}$ for all $\lambda$. If there exist infinitely many $\lambda\in\bar{K}$ such that both ${\bf a}(\lambda)$ and ${\bf b}(\lambda)$ are torsion points for $\varPhi^{\lambda}$, then we show that for each $\lambda\in\overline K$, ${\bf a}(\lambda)$ is torsion for $\varPhi^{\lambda}$ if and only if ${\bf b}(\lambda)$ is torsion for $\varPhi^{\lambda}$. In the case ${\bf a},{\bf b}\in K$, we prove in addition that ${\bf a}$ and ${\bf b}$ must be $\overline{\mathbb{F}_p}$-linearly dependent.
DOI : 10.4064/aa161-3-2
Keywords: varphi lambda algebraic family drinfeld modules defined field characteristic lambda assume neither lambda nor lambda torsion point varphi lambda lambda there exist infinitely many lambda bar lambda lambda torsion points varphi lambda each lambda overline lambda torsion varphi lambda only lambda torsion varphi lambda prove addition overline mathbb linearly dependent

Dragos Ghioca 1 ; Liang-Chung Hsia 2

1 Department of Mathematics University of British Columbia Vancouver, BC V6T 1Z2, Canada
2 Department of Mathematics National Taiwan Normal University Taiwan, ROC
@article{10_4064_aa161_3_2,
     author = {Dragos Ghioca and Liang-Chung Hsia},
     title = {Torsion points in families of {Drinfeld} modules},
     journal = {Acta Arithmetica},
     pages = {219--240},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {2013},
     doi = {10.4064/aa161-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-2/}
}
TY  - JOUR
AU  - Dragos Ghioca
AU  - Liang-Chung Hsia
TI  - Torsion points in families of Drinfeld modules
JO  - Acta Arithmetica
PY  - 2013
SP  - 219
EP  - 240
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-2/
DO  - 10.4064/aa161-3-2
LA  - en
ID  - 10_4064_aa161_3_2
ER  - 
%0 Journal Article
%A Dragos Ghioca
%A Liang-Chung Hsia
%T Torsion points in families of Drinfeld modules
%J Acta Arithmetica
%D 2013
%P 219-240
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-2/
%R 10.4064/aa161-3-2
%G en
%F 10_4064_aa161_3_2
Dragos Ghioca; Liang-Chung Hsia. Torsion points in families of Drinfeld modules. Acta Arithmetica, Tome 161 (2013) no. 3, pp. 219-240. doi : 10.4064/aa161-3-2. http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-2/

Cité par Sources :