Torsion points in families of Drinfeld modules
Acta Arithmetica, Tome 161 (2013) no. 3, pp. 219-240
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\varPhi^\lambda$ be an algebraic family of Drinfeld modules defined over a field $K$ of characteristic $p$, and let
${\bf a},{\bf b}\in K[\lambda]$. Assume that neither ${\bf a}(\lambda)$ nor ${\bf b}(\lambda)$ is a torsion point for $\varPhi^{\lambda}$ for all $\lambda$. If there exist infinitely many $\lambda\in\bar{K}$ such that both ${\bf a}(\lambda)$ and ${\bf b}(\lambda)$ are torsion points for $\varPhi^{\lambda}$, then we show that for each
$\lambda\in\overline K$, ${\bf a}(\lambda)$ is torsion for $\varPhi^{\lambda}$ if and only if
${\bf b}(\lambda)$ is torsion for $\varPhi^{\lambda}$. In the case ${\bf a},{\bf b}\in K$, we prove in addition that ${\bf a}$ and ${\bf b}$ must be $\overline{\mathbb{F}_p}$-linearly dependent.
Keywords:
varphi lambda algebraic family drinfeld modules defined field characteristic lambda assume neither lambda nor lambda torsion point varphi lambda lambda there exist infinitely many lambda bar lambda lambda torsion points varphi lambda each lambda overline lambda torsion varphi lambda only lambda torsion varphi lambda prove addition overline mathbb linearly dependent
Affiliations des auteurs :
Dragos Ghioca 1 ; Liang-Chung Hsia 2
@article{10_4064_aa161_3_2,
author = {Dragos Ghioca and Liang-Chung Hsia},
title = {Torsion points in families of {Drinfeld} modules},
journal = {Acta Arithmetica},
pages = {219--240},
publisher = {mathdoc},
volume = {161},
number = {3},
year = {2013},
doi = {10.4064/aa161-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-2/}
}
TY - JOUR AU - Dragos Ghioca AU - Liang-Chung Hsia TI - Torsion points in families of Drinfeld modules JO - Acta Arithmetica PY - 2013 SP - 219 EP - 240 VL - 161 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-2/ DO - 10.4064/aa161-3-2 LA - en ID - 10_4064_aa161_3_2 ER -
Dragos Ghioca; Liang-Chung Hsia. Torsion points in families of Drinfeld modules. Acta Arithmetica, Tome 161 (2013) no. 3, pp. 219-240. doi: 10.4064/aa161-3-2
Cité par Sources :