Characterization of the torsion of the Jacobians of two families of hyperelliptic curves
Acta Arithmetica, Tome 161 (2013) no. 3, pp. 201-218.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider the families of curves $C^{n,A}:y^{2}=x^{n}+Ax$ and $C_{n,A}:y^{2}=x^{n}+A$ where $A$ is a nonzero rational. Let $J^{n,A}$ and $J_{n,A}$ denote their respective Jacobian varieties. The torsion points of $C^{3,A}( \mathbb {Q}) $ and $C_{3,A}( \mathbb {Q}) $ are well known. We show that for any nonzero rational $A$ the torsion subgroup of $J^{7,A}( \mathbb {Q}) $ is a 2-group, and for $A\not =4a^{4},-1728,-1259712$ this subgroup is equal to $J^{7,A}( \mathbb {Q}) [ 2] $ (for a excluded values of $A$, with the possible exception of $A=-1728$, this group has a point of order 4). This is a variant of the corresponding results for $J^{3,A}$ ($A\not =4$) and $J^{5,A}$. We also almost completely determine the $\mathbb {Q}$-rational torsion of $J_{p,A}$ for all odd primes $p$, and all $A\in \mathbb {Q}\setminus \{ 0\} $. We discuss the excluded case (i.e. $A\in ( -1) ^{( p-1) /2}p\mathbb {N}^{2}$).
DOI : 10.4064/aa161-3-1
Keywords: consider families curves where nonzero rational denote their respective jacobian varieties torsion points mathbb mathbb known nonzero rational torsion subgroup mathbb group subgroup equal mathbb excluded values possible exception group has point order variant corresponding results almost completely determine mathbb rational torsion odd primes mathbb setminus discuss excluded p mathbb

Tomasz Jędrzejak 1

1 Institute of Mathematics University of Szczecin Wielkopolska 15 70-451 Szczecin, Poland
@article{10_4064_aa161_3_1,
     author = {Tomasz J\k{e}drzejak},
     title = {Characterization of the torsion of the {Jacobians} of two families of hyperelliptic curves},
     journal = {Acta Arithmetica},
     pages = {201--218},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {2013},
     doi = {10.4064/aa161-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-1/}
}
TY  - JOUR
AU  - Tomasz Jędrzejak
TI  - Characterization of the torsion of the Jacobians of two families of hyperelliptic curves
JO  - Acta Arithmetica
PY  - 2013
SP  - 201
EP  - 218
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-1/
DO  - 10.4064/aa161-3-1
LA  - en
ID  - 10_4064_aa161_3_1
ER  - 
%0 Journal Article
%A Tomasz Jędrzejak
%T Characterization of the torsion of the Jacobians of two families of hyperelliptic curves
%J Acta Arithmetica
%D 2013
%P 201-218
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-1/
%R 10.4064/aa161-3-1
%G en
%F 10_4064_aa161_3_1
Tomasz Jędrzejak. Characterization of the torsion of the Jacobians of two families of hyperelliptic curves. Acta Arithmetica, Tome 161 (2013) no. 3, pp. 201-218. doi : 10.4064/aa161-3-1. http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-1/

Cité par Sources :