The $n$-level densities of low-lying zeros of quadratic Dirichlet $L$-functions
Acta Arithmetica, Tome 161 (2013) no. 2, pp. 145-182.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Previous work by Rubinstein and Gao computed the $n$-level densities for families of quadratic Dirichlet $L$-functions for test functions $\widehat{f}_1, \dots, \widehat{f}_n$ supported in $\sum_{i=1}^n |u_i| 2$, and showed agreement with random matrix theory predictions in this range for $n \le 3$ but only in a restricted range for larger $n$. We extend these results and show agreement for $n \le 7$, and reduce higher $n$ to a Fourier transform identity. The proof involves adopting a new combinatorial perspective to convert all terms to a canonical form, which facilitates the comparison of the two sides.
DOI : 10.4064/aa161-2-3
Keywords: previous work rubinstein gao computed n level densities families quadratic dirichlet l functions test functions widehat dots widehat supported sum showed agreement random matrix theory predictions range only restricted range larger extend these results agreement reduce higher fourier transform identity proof involves adopting combinatorial perspective convert terms canonical form which facilitates comparison sides

Jake Levinson 1 ; Steven J. Miller 2

1 Department of Mathematics University of Michigan Ann Arbor, MI 48109, U.S.A.
2 Department of Mathematics and Statistics Williams College Williamstown, MA 01267, U.S.A.
@article{10_4064_aa161_2_3,
     author = {Jake Levinson and Steven J. Miller},
     title = {The $n$-level densities of low-lying zeros of
 quadratic {Dirichlet} $L$-functions},
     journal = {Acta Arithmetica},
     pages = {145--182},
     publisher = {mathdoc},
     volume = {161},
     number = {2},
     year = {2013},
     doi = {10.4064/aa161-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-3/}
}
TY  - JOUR
AU  - Jake Levinson
AU  - Steven J. Miller
TI  - The $n$-level densities of low-lying zeros of
 quadratic Dirichlet $L$-functions
JO  - Acta Arithmetica
PY  - 2013
SP  - 145
EP  - 182
VL  - 161
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-3/
DO  - 10.4064/aa161-2-3
LA  - en
ID  - 10_4064_aa161_2_3
ER  - 
%0 Journal Article
%A Jake Levinson
%A Steven J. Miller
%T The $n$-level densities of low-lying zeros of
 quadratic Dirichlet $L$-functions
%J Acta Arithmetica
%D 2013
%P 145-182
%V 161
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-3/
%R 10.4064/aa161-2-3
%G en
%F 10_4064_aa161_2_3
Jake Levinson; Steven J. Miller. The $n$-level densities of low-lying zeros of
 quadratic Dirichlet $L$-functions. Acta Arithmetica, Tome 161 (2013) no. 2, pp. 145-182. doi : 10.4064/aa161-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-3/

Cité par Sources :