On sets of polynomials whose difference set
contains no squares
Acta Arithmetica, Tome 161 (2013) no. 2, pp. 127-143
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mathbb F}_q[t]$ be the polynomial ring over the finite field ${\mathbb F}_q$, and let ${\mathbb G_{N}}$ be the subset of ${\mathbb F}_q[t]$ containing all polynomials of degree strictly less than $N$. Define $D(N)$ to be the maximal cardinality of a set $A \subseteq {\mathbb G_{N}}$ for which $A-A$ contains no squares of polynomials. By combining the polynomial Hardy–Littlewood circle method with the density increment technology developed by Pintz, Steiger and Szemerédi, we prove that $D(N) \ll q^N(\log N)^{7}/N$.
Keywords:
mathbb polynomial ring finite field mathbb mathbb subset mathbb containing polynomials degree strictly define maximal cardinality set subseteq mathbb which a a contains squares polynomials combining polynomial hardy littlewood circle method density increment technology developed pintz steiger szemer prove log
Affiliations des auteurs :
Thái Hoàng Lê 1 ; Yu-Ru Liu 2
@article{10_4064_aa161_2_2,
author = {Th\'ai Ho\`ang L\^e and Yu-Ru Liu},
title = {On sets of polynomials whose difference set
contains no squares},
journal = {Acta Arithmetica},
pages = {127--143},
publisher = {mathdoc},
volume = {161},
number = {2},
year = {2013},
doi = {10.4064/aa161-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-2/}
}
TY - JOUR AU - Thái Hoàng Lê AU - Yu-Ru Liu TI - On sets of polynomials whose difference set contains no squares JO - Acta Arithmetica PY - 2013 SP - 127 EP - 143 VL - 161 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-2/ DO - 10.4064/aa161-2-2 LA - en ID - 10_4064_aa161_2_2 ER -
Thái Hoàng Lê; Yu-Ru Liu. On sets of polynomials whose difference set contains no squares. Acta Arithmetica, Tome 161 (2013) no. 2, pp. 127-143. doi: 10.4064/aa161-2-2
Cité par Sources :