On a congruence of Emma Lehmer related to Euler numbers
Acta Arithmetica, Tome 161 (2013) no. 1, pp. 47-67
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A congruence of Emma Lehmer (1938) for Euler numbers $E_{p-3}$ modulo $p$
in terms of a certain sum of reciprocals of squares of integers was recently
extended to prime power moduli by T. Cai et al. We generalize
this further to arbitrary composite moduli $n$ and characterize those $n$
for which the sum in question vanishes modulo $n$ (or modulo $n/3$ when $3\,|\, n$). Primes for
which $E_{p-3}\equiv 0\pmod{p}$ play an important role, and we
present some numerical results.
Keywords:
congruence emma lehmer euler numbers p modulo nbsp terms certain sum reciprocals squares integers recently extended prime power moduli nbsp cai generalize further arbitrary composite moduli characterize those which sum question vanishes modulo nbsp modulo primes which p equiv pmod play important role present numerical results
Affiliations des auteurs :
John B. Cosgrave 1 ; Karl Dilcher 2
@article{10_4064_aa161_1_4,
author = {John B. Cosgrave and Karl Dilcher},
title = {On a congruence of {Emma} {Lehmer} related to {Euler} numbers},
journal = {Acta Arithmetica},
pages = {47--67},
publisher = {mathdoc},
volume = {161},
number = {1},
year = {2013},
doi = {10.4064/aa161-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-4/}
}
TY - JOUR AU - John B. Cosgrave AU - Karl Dilcher TI - On a congruence of Emma Lehmer related to Euler numbers JO - Acta Arithmetica PY - 2013 SP - 47 EP - 67 VL - 161 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-4/ DO - 10.4064/aa161-1-4 LA - en ID - 10_4064_aa161_1_4 ER -
John B. Cosgrave; Karl Dilcher. On a congruence of Emma Lehmer related to Euler numbers. Acta Arithmetica, Tome 161 (2013) no. 1, pp. 47-67. doi: 10.4064/aa161-1-4
Cité par Sources :