On a congruence of Emma Lehmer related to Euler numbers
Acta Arithmetica, Tome 161 (2013) no. 1, pp. 47-67.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A congruence of Emma Lehmer (1938) for Euler numbers $E_{p-3}$ modulo $p$ in terms of a certain sum of reciprocals of squares of integers was recently extended to prime power moduli by T. Cai et al. We generalize this further to arbitrary composite moduli $n$ and characterize those $n$ for which the sum in question vanishes modulo $n$ (or modulo $n/3$ when $3\,|\, n$). Primes for which $E_{p-3}\equiv 0\pmod{p}$ play an important role, and we present some numerical results.
DOI : 10.4064/aa161-1-4
Keywords: congruence emma lehmer euler numbers p modulo nbsp terms certain sum reciprocals squares integers recently extended prime power moduli nbsp cai generalize further arbitrary composite moduli characterize those which sum question vanishes modulo nbsp modulo primes which p equiv pmod play important role present numerical results

John B. Cosgrave 1 ; Karl Dilcher 2

1 79 Rowanbyrn Blackrock, County Dublin, Ireland
2 Department of Mathematics and Statistics Dalhousie University Halifax, NS, B3H 3J5, Canada
@article{10_4064_aa161_1_4,
     author = {John B. Cosgrave and Karl Dilcher},
     title = {On a congruence of {Emma} {Lehmer} related to {Euler} numbers},
     journal = {Acta Arithmetica},
     pages = {47--67},
     publisher = {mathdoc},
     volume = {161},
     number = {1},
     year = {2013},
     doi = {10.4064/aa161-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-4/}
}
TY  - JOUR
AU  - John B. Cosgrave
AU  - Karl Dilcher
TI  - On a congruence of Emma Lehmer related to Euler numbers
JO  - Acta Arithmetica
PY  - 2013
SP  - 47
EP  - 67
VL  - 161
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-4/
DO  - 10.4064/aa161-1-4
LA  - en
ID  - 10_4064_aa161_1_4
ER  - 
%0 Journal Article
%A John B. Cosgrave
%A Karl Dilcher
%T On a congruence of Emma Lehmer related to Euler numbers
%J Acta Arithmetica
%D 2013
%P 47-67
%V 161
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-4/
%R 10.4064/aa161-1-4
%G en
%F 10_4064_aa161_1_4
John B. Cosgrave; Karl Dilcher. On a congruence of Emma Lehmer related to Euler numbers. Acta Arithmetica, Tome 161 (2013) no. 1, pp. 47-67. doi : 10.4064/aa161-1-4. http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-4/

Cité par Sources :