On the sumset of the primes and a linear recurrence
Acta Arithmetica, Tome 161 (2013) no. 1, pp. 33-46
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Romanoff (1934) showed that integers that are the sum of a prime and a power of $2$ have positive lower asymptotic density in the positive integers. We adapt his method by showing more generally the existence of a positive lower asymptotic density for integers that are the sum of a prime and a term of a given nonconstant nondegenerate integral linear recurrence with separable characteristic polynomial.
Keywords:
romanoff showed integers sum prime nbsp power have positive lower asymptotic density positive integers adapt his method showing generally existence positive lower asymptotic density integers sum prime nbsp term nbsp given nonconstant nondegenerate integral linear recurrence separable characteristic polynomial
Affiliations des auteurs :
Christian Ballot 1 ; Florian Luca 2
@article{10_4064_aa161_1_3,
author = {Christian Ballot and Florian Luca},
title = {On the sumset of the primes and a linear recurrence},
journal = {Acta Arithmetica},
pages = {33--46},
publisher = {mathdoc},
volume = {161},
number = {1},
year = {2013},
doi = {10.4064/aa161-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-3/}
}
TY - JOUR AU - Christian Ballot AU - Florian Luca TI - On the sumset of the primes and a linear recurrence JO - Acta Arithmetica PY - 2013 SP - 33 EP - 46 VL - 161 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-3/ DO - 10.4064/aa161-1-3 LA - en ID - 10_4064_aa161_1_3 ER -
Christian Ballot; Florian Luca. On the sumset of the primes and a linear recurrence. Acta Arithmetica, Tome 161 (2013) no. 1, pp. 33-46. doi: 10.4064/aa161-1-3
Cité par Sources :