On the magnitudes of some small cyclotomic integers
Acta Arithmetica, Tome 160 (2013) no. 4, pp. 317-332
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the last of five outstanding conjectures made by R. M. Robinson from 1965 concerning small cyclotomic integers. In particular, given any cyclotomic integer $\beta $ all of whose conjugates have absolute value at most $5$, we prove that the largest such conjugate has absolute value of one of four explicit types given by two infinite classes and two exceptional cases. We also extend this result by showing that with the addition of one form, the conjecture is true for $\beta $ with magnitudes up to
$5+ {1/25}$.
Keywords:
prove five outstanding conjectures made robinson concerning small cyclotomic integers particular given cyclotomic integer beta whose conjugates have absolute value nbsp prove largest conjugate has absolute value explicit types given infinite classes exceptional cases extend result showing addition form conjecture beta magnitudes
Affiliations des auteurs :
Frederick Robinson 1 ; Michael Wurtz 2
@article{10_4064_aa160_4_2,
author = {Frederick Robinson and Michael Wurtz},
title = {On the magnitudes of some small cyclotomic integers},
journal = {Acta Arithmetica},
pages = {317--332},
publisher = {mathdoc},
volume = {160},
number = {4},
year = {2013},
doi = {10.4064/aa160-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-4-2/}
}
TY - JOUR AU - Frederick Robinson AU - Michael Wurtz TI - On the magnitudes of some small cyclotomic integers JO - Acta Arithmetica PY - 2013 SP - 317 EP - 332 VL - 160 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa160-4-2/ DO - 10.4064/aa160-4-2 LA - en ID - 10_4064_aa160_4_2 ER -
Frederick Robinson; Michael Wurtz. On the magnitudes of some small cyclotomic integers. Acta Arithmetica, Tome 160 (2013) no. 4, pp. 317-332. doi: 10.4064/aa160-4-2
Cité par Sources :