Capturing forms in dense subsets of finite fields
Acta Arithmetica, Tome 160 (2013) no. 3, pp. 277-284.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An open problem of arithmetic Ramsey theory asks if given an $r$-colouring $c:\mathbb N\to \{1,\ldots ,r\}$ of the natural numbers, there exist $x,y\in \mathbb N$ such that $c(xy)=c(x+y)$ apart from the trivial solution $x=y=2$. More generally, one could replace $x+y$ with a binary linear form and $xy$ with a binary quadratic form. In this paper we examine the analogous problem in a finite field $\mathbb F_q$. Specifically, given a linear form $L$ and a quadratic form $Q$ in two variables, we provide estimates on the necessary size of $A\subset \mathbb F_q$ to guarantee that $L(x,y)$ and $Q(x,y)$ are elements of $A$ for some $x,y\in \mathbb F_q$.
DOI : 10.4064/aa160-3-4
Keywords: problem arithmetic ramsey theory asks given r colouring mathbb ldots natural numbers there exist mathbb apart trivial solution generally could replace binary linear form binary quadratic form paper examine analogous problem finite field mathbb specifically given linear form quadratic form variables provide estimates necessary size subset mathbb guarantee elements mathbb

Brandon Hanson 1

1 Department of Mathematics University of Toronto M5S 2E4 Toronto, Canada
@article{10_4064_aa160_3_4,
     author = {Brandon Hanson},
     title = {Capturing forms in dense subsets of finite fields},
     journal = {Acta Arithmetica},
     pages = {277--284},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2013},
     doi = {10.4064/aa160-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-4/}
}
TY  - JOUR
AU  - Brandon Hanson
TI  - Capturing forms in dense subsets of finite fields
JO  - Acta Arithmetica
PY  - 2013
SP  - 277
EP  - 284
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-4/
DO  - 10.4064/aa160-3-4
LA  - en
ID  - 10_4064_aa160_3_4
ER  - 
%0 Journal Article
%A Brandon Hanson
%T Capturing forms in dense subsets of finite fields
%J Acta Arithmetica
%D 2013
%P 277-284
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-4/
%R 10.4064/aa160-3-4
%G en
%F 10_4064_aa160_3_4
Brandon Hanson. Capturing forms in dense subsets of finite fields. Acta Arithmetica, Tome 160 (2013) no. 3, pp. 277-284. doi : 10.4064/aa160-3-4. http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-4/

Cité par Sources :