Optimality of Chebyshev bounds for Beurling generalized numbers
Acta Arithmetica, Tome 160 (2013) no. 3, pp. 259-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If the counting function $N(x)$ of integers of a Beurling generalized number system satisfies both $\int _1^\infty x^{-2}|N(x)-Ax|\,dx\infty $ and $x^{-1}(\log x) (N(x)-Ax)=O(1)$, then the counting function $\pi (x)$ of the primes of this system is known to satisfy the Chebyshev bound $\pi (x)\ll x/\log x$. Let $f(x)$ increase to infinity arbitrarily slowly. We give a construction showing that $\int _1^\infty |N(x)-Ax|x^{-2}\,dx\infty $ and $x^{-1}(\log x) (N(x)-Ax)=O(f(x))$ do not imply the Chebyshev bound.
DOI : 10.4064/aa160-3-3
Keywords: counting function integers beurling generalized number system satisfies int infty ax infty log ax counting function primes system known satisfy chebyshev bound log increase infinity arbitrarily slowly construction showing int infty ax infty log ax imply chebyshev bound

Harold G. Diamond 1 ; Wen-Bin Zhang 2

1 Department of Mathematics University of Illinois Urbana, IL 61801, U.S.A.
2 920 West Lawrence Ave. #1112 Chicago, IL 60640, U.S.A.
@article{10_4064_aa160_3_3,
     author = {Harold G. Diamond and Wen-Bin Zhang},
     title = {Optimality of {Chebyshev} bounds
 for {Beurling} generalized numbers},
     journal = {Acta Arithmetica},
     pages = {259--275},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2013},
     doi = {10.4064/aa160-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-3/}
}
TY  - JOUR
AU  - Harold G. Diamond
AU  - Wen-Bin Zhang
TI  - Optimality of Chebyshev bounds
 for Beurling generalized numbers
JO  - Acta Arithmetica
PY  - 2013
SP  - 259
EP  - 275
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-3/
DO  - 10.4064/aa160-3-3
LA  - en
ID  - 10_4064_aa160_3_3
ER  - 
%0 Journal Article
%A Harold G. Diamond
%A Wen-Bin Zhang
%T Optimality of Chebyshev bounds
 for Beurling generalized numbers
%J Acta Arithmetica
%D 2013
%P 259-275
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-3/
%R 10.4064/aa160-3-3
%G en
%F 10_4064_aa160_3_3
Harold G. Diamond; Wen-Bin Zhang. Optimality of Chebyshev bounds
 for Beurling generalized numbers. Acta Arithmetica, Tome 160 (2013) no. 3, pp. 259-275. doi : 10.4064/aa160-3-3. http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-3/

Cité par Sources :