Optimality of Chebyshev bounds
for Beurling generalized numbers
Acta Arithmetica, Tome 160 (2013) no. 3, pp. 259-275
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
If the counting function $N(x)$ of integers of a Beurling generalized number system satisfies both $\int _1^\infty x^{-2}|N(x)-Ax|\,dx\infty $ and $x^{-1}(\log x) (N(x)-Ax)=O(1)$, then the counting function $\pi (x)$ of the primes of this system is known to satisfy the Chebyshev bound $\pi (x)\ll x/\log x$. Let $f(x)$ increase to infinity arbitrarily slowly. We give a construction showing that $\int _1^\infty |N(x)-Ax|x^{-2}\,dx\infty $ and $x^{-1}(\log x) (N(x)-Ax)=O(f(x))$ do not imply the Chebyshev bound.
Keywords:
counting function integers beurling generalized number system satisfies int infty ax infty log ax counting function primes system known satisfy chebyshev bound log increase infinity arbitrarily slowly construction showing int infty ax infty log ax imply chebyshev bound
Affiliations des auteurs :
Harold G. Diamond 1 ; Wen-Bin Zhang 2
@article{10_4064_aa160_3_3,
author = {Harold G. Diamond and Wen-Bin Zhang},
title = {Optimality of {Chebyshev} bounds
for {Beurling} generalized numbers},
journal = {Acta Arithmetica},
pages = {259--275},
year = {2013},
volume = {160},
number = {3},
doi = {10.4064/aa160-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-3/}
}
TY - JOUR AU - Harold G. Diamond AU - Wen-Bin Zhang TI - Optimality of Chebyshev bounds for Beurling generalized numbers JO - Acta Arithmetica PY - 2013 SP - 259 EP - 275 VL - 160 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-3/ DO - 10.4064/aa160-3-3 LA - en ID - 10_4064_aa160_3_3 ER -
Harold G. Diamond; Wen-Bin Zhang. Optimality of Chebyshev bounds for Beurling generalized numbers. Acta Arithmetica, Tome 160 (2013) no. 3, pp. 259-275. doi: 10.4064/aa160-3-3
Cité par Sources :