Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function
Acta Arithmetica, Tome 160 (2013) no. 3, pp. 243-257
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that the Lebesgue measure of the set of real points which are inhomogeneously $\varPsi $-approximable by polynomials, where $\varPsi $ is not necessarily monotonic, is zero.
Keywords:
prove lebesgue measure set real points which inhomogeneously varpsi approximable polynomials where varpsi necessarily monotonic zero
Affiliations des auteurs :
Natalia Budarina 1 ; Detta Dickinson 2
@article{10_4064_aa160_3_2,
author = {Natalia Budarina and Detta Dickinson},
title = {Inhomogeneous {Diophantine} approximation on integer polynomials with non-monotonic error function},
journal = {Acta Arithmetica},
pages = {243--257},
year = {2013},
volume = {160},
number = {3},
doi = {10.4064/aa160-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-2/}
}
TY - JOUR AU - Natalia Budarina AU - Detta Dickinson TI - Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function JO - Acta Arithmetica PY - 2013 SP - 243 EP - 257 VL - 160 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-2/ DO - 10.4064/aa160-3-2 LA - en ID - 10_4064_aa160_3_2 ER -
%0 Journal Article %A Natalia Budarina %A Detta Dickinson %T Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function %J Acta Arithmetica %D 2013 %P 243-257 %V 160 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-2/ %R 10.4064/aa160-3-2 %G en %F 10_4064_aa160_3_2
Natalia Budarina; Detta Dickinson. Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function. Acta Arithmetica, Tome 160 (2013) no. 3, pp. 243-257. doi: 10.4064/aa160-3-2
Cité par Sources :