Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function
Acta Arithmetica, Tome 160 (2013) no. 3, pp. 243-257
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the Lebesgue measure of the set of real points which are inhomogeneously $\varPsi $-approximable by polynomials, where $\varPsi $ is not necessarily monotonic, is zero.
Keywords:
prove lebesgue measure set real points which inhomogeneously varpsi approximable polynomials where varpsi necessarily monotonic zero
Affiliations des auteurs :
Natalia Budarina 1 ; Detta Dickinson 2
@article{10_4064_aa160_3_2,
author = {Natalia Budarina and Detta Dickinson},
title = {Inhomogeneous {Diophantine} approximation on integer polynomials with non-monotonic error function},
journal = {Acta Arithmetica},
pages = {243--257},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {2013},
doi = {10.4064/aa160-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-2/}
}
TY - JOUR AU - Natalia Budarina AU - Detta Dickinson TI - Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function JO - Acta Arithmetica PY - 2013 SP - 243 EP - 257 VL - 160 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-2/ DO - 10.4064/aa160-3-2 LA - en ID - 10_4064_aa160_3_2 ER -
%0 Journal Article %A Natalia Budarina %A Detta Dickinson %T Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function %J Acta Arithmetica %D 2013 %P 243-257 %V 160 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-2/ %R 10.4064/aa160-3-2 %G en %F 10_4064_aa160_3_2
Natalia Budarina; Detta Dickinson. Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function. Acta Arithmetica, Tome 160 (2013) no. 3, pp. 243-257. doi: 10.4064/aa160-3-2
Cité par Sources :