A zero density result for the Riemann zeta function
Acta Arithmetica, Tome 160 (2013) no. 2, pp. 185-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an explicit bound for $N(\sigma ,T)$, the number of zeros of the Riemann zeta function satisfying $\mathfrak {Re}\,s\ge \sigma $ and $0 \le \mathfrak {Im}\, s \le T$. This result provides a significant improvement to Rosser's bound for $N(T)$ when used for estimating prime counting functions.
DOI : 10.4064/aa160-2-6
Keywords: prove explicit bound sigma number zeros riemann zeta function satisfying mathfrak sigma mathfrak result provides significant improvement rossers bound estimating prime counting functions

Habiba Kadiri 1

1 Department of Mathematics and Computer Science University of Lethbridge 4401 University Drive Lethbridge, Alberta T1K 3M4 Canada
@article{10_4064_aa160_2_6,
     author = {Habiba Kadiri},
     title = {A zero density result for the {Riemann} zeta function},
     journal = {Acta Arithmetica},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2013},
     doi = {10.4064/aa160-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-6/}
}
TY  - JOUR
AU  - Habiba Kadiri
TI  - A zero density result for the Riemann zeta function
JO  - Acta Arithmetica
PY  - 2013
SP  - 185
EP  - 200
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-6/
DO  - 10.4064/aa160-2-6
LA  - en
ID  - 10_4064_aa160_2_6
ER  - 
%0 Journal Article
%A Habiba Kadiri
%T A zero density result for the Riemann zeta function
%J Acta Arithmetica
%D 2013
%P 185-200
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-6/
%R 10.4064/aa160-2-6
%G en
%F 10_4064_aa160_2_6
Habiba Kadiri. A zero density result for the Riemann zeta function. Acta Arithmetica, Tome 160 (2013) no. 2, pp. 185-200. doi : 10.4064/aa160-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-6/

Cité par Sources :