A zero density result for the Riemann zeta function
Acta Arithmetica, Tome 160 (2013) no. 2, pp. 185-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove an explicit bound for $N(\sigma ,T)$, the number of zeros of the Riemann zeta function satisfying $\mathfrak {Re}\,s\ge \sigma $ and $0 \le \mathfrak {Im}\, s \le T$. This result provides a significant improvement to Rosser's bound for $N(T)$ when used for estimating prime counting functions.
Keywords:
prove explicit bound sigma number zeros riemann zeta function satisfying mathfrak sigma mathfrak result provides significant improvement rossers bound estimating prime counting functions
Affiliations des auteurs :
Habiba Kadiri 1
@article{10_4064_aa160_2_6,
author = {Habiba Kadiri},
title = {A zero density result for the {Riemann} zeta function},
journal = {Acta Arithmetica},
pages = {185--200},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {2013},
doi = {10.4064/aa160-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-6/}
}
Habiba Kadiri. A zero density result for the Riemann zeta function. Acta Arithmetica, Tome 160 (2013) no. 2, pp. 185-200. doi: 10.4064/aa160-2-6
Cité par Sources :