Chebyshev bounds for Beurling numbers
Acta Arithmetica, Tome 160 (2013) no. 2, pp. 143-157.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The first author conjectured that Chebyshev-type prime bounds hold for Beurling generalized numbers provided that the counting function $N(x)$ of the generalized integers satisfies the $L^1$ condition \[ \int _1^\infty |N(x) - Ax|\,dx/x^2 \infty \] for some positive constant $A$. This conjecture was shown false by an example of Kahane. Here we establish the Chebyshev bounds using the $L^1$ hypothesis and a second integral condition.
DOI : 10.4064/aa160-2-4
Keywords: first author conjectured chebyshev type prime bounds beurling generalized numbers provided counting function generalized integers satisfies condition int infty infty positive constant conjecture shown false example kahane here establish chebyshev bounds using hypothesis second integral condition

Harold G. Diamond 1 ; Wen-Bin Zhang 2

1 Department of Mathematics University of Illinois Urbana, IL 61801, U.S.A.
2 920 West Lawrence Ave. #1112 Chicago, IL 60640, U.S.A.
@article{10_4064_aa160_2_4,
     author = {Harold G. Diamond and Wen-Bin Zhang},
     title = {Chebyshev bounds for {Beurling} numbers},
     journal = {Acta Arithmetica},
     pages = {143--157},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2013},
     doi = {10.4064/aa160-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-4/}
}
TY  - JOUR
AU  - Harold G. Diamond
AU  - Wen-Bin Zhang
TI  - Chebyshev bounds for Beurling numbers
JO  - Acta Arithmetica
PY  - 2013
SP  - 143
EP  - 157
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-4/
DO  - 10.4064/aa160-2-4
LA  - en
ID  - 10_4064_aa160_2_4
ER  - 
%0 Journal Article
%A Harold G. Diamond
%A Wen-Bin Zhang
%T Chebyshev bounds for Beurling numbers
%J Acta Arithmetica
%D 2013
%P 143-157
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-4/
%R 10.4064/aa160-2-4
%G en
%F 10_4064_aa160_2_4
Harold G. Diamond; Wen-Bin Zhang. Chebyshev bounds for Beurling numbers. Acta Arithmetica, Tome 160 (2013) no. 2, pp. 143-157. doi : 10.4064/aa160-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-4/

Cité par Sources :