Harmonic weak Maass-modular grids in higher level cases
Acta Arithmetica, Tome 160 (2013) no. 2, pp. 129-141.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We extend Guerzhoy's Maass-modular grids on the full modular group $\mathrm {SL}_2(\mathbb Z)$ to congruence subgroups $\varGamma _0(N)$ and $\varGamma _0^+(p)$.
DOI : 10.4064/aa160-2-3
Keywords: extend guerzhoys maass modular grids full modular group mathrm mathbb congruence subgroups vargamma vargamma

Bumkyu Cho 1 ; SoYoung Choi 2 ; Chang Heon Kim 3

1 Department of Mathematics Dongguk University-Seoul 30 Pildong-ro 1-gil, Jung-gu Seoul, 100-715, Korea
2 Department of Mathematics Education Dongguk University-Gyeongju Gyeongju, 780-714, Korea
3 Department of Mathematics and Research Institute for Natural Sciences Hanyang University Seoul, 133-791, Korea
@article{10_4064_aa160_2_3,
     author = {Bumkyu Cho and SoYoung Choi and Chang Heon Kim},
     title = {Harmonic weak {Maass-modular} grids in higher level cases},
     journal = {Acta Arithmetica},
     pages = {129--141},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2013},
     doi = {10.4064/aa160-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-3/}
}
TY  - JOUR
AU  - Bumkyu Cho
AU  - SoYoung Choi
AU  - Chang Heon Kim
TI  - Harmonic weak Maass-modular grids in higher level cases
JO  - Acta Arithmetica
PY  - 2013
SP  - 129
EP  - 141
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-3/
DO  - 10.4064/aa160-2-3
LA  - en
ID  - 10_4064_aa160_2_3
ER  - 
%0 Journal Article
%A Bumkyu Cho
%A SoYoung Choi
%A Chang Heon Kim
%T Harmonic weak Maass-modular grids in higher level cases
%J Acta Arithmetica
%D 2013
%P 129-141
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-3/
%R 10.4064/aa160-2-3
%G en
%F 10_4064_aa160_2_3
Bumkyu Cho; SoYoung Choi; Chang Heon Kim. Harmonic weak Maass-modular grids in higher level cases. Acta Arithmetica, Tome 160 (2013) no. 2, pp. 129-141. doi : 10.4064/aa160-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-3/

Cité par Sources :