An upper bound for the minimum genus of a curve without points of small degree
Acta Arithmetica, Tome 160 (2013) no. 2, pp. 115-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for any prime $p$ there is a constant $C_p>0$ such that for any $n>0$ and for any $p$-power $q$ there is a smooth, projective, absolutely irreducible curve over $\mathbb {F}_q$ of genus $g\leq C_p q^n$ without points of degree smaller than $n$.
DOI : 10.4064/aa160-2-2
Keywords: prove prime there constant p power there smooth projective absolutely irreducible curve mathbb genus leq n without points degree smaller nbsp

Claudio Stirpe 1

1 Dipartimento di Matematica Università di Roma `Sapienza' Via Castello 35 03029 Veroli (FR), Italy
@article{10_4064_aa160_2_2,
     author = {Claudio Stirpe},
     title = {An upper bound for the minimum genus of a
 curve without points of small degree},
     journal = {Acta Arithmetica},
     pages = {115--128},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2013},
     doi = {10.4064/aa160-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-2/}
}
TY  - JOUR
AU  - Claudio Stirpe
TI  - An upper bound for the minimum genus of a
 curve without points of small degree
JO  - Acta Arithmetica
PY  - 2013
SP  - 115
EP  - 128
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-2/
DO  - 10.4064/aa160-2-2
LA  - en
ID  - 10_4064_aa160_2_2
ER  - 
%0 Journal Article
%A Claudio Stirpe
%T An upper bound for the minimum genus of a
 curve without points of small degree
%J Acta Arithmetica
%D 2013
%P 115-128
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-2/
%R 10.4064/aa160-2-2
%G en
%F 10_4064_aa160_2_2
Claudio Stirpe. An upper bound for the minimum genus of a
 curve without points of small degree. Acta Arithmetica, Tome 160 (2013) no. 2, pp. 115-128. doi : 10.4064/aa160-2-2. http://geodesic.mathdoc.fr/articles/10.4064/aa160-2-2/

Cité par Sources :