Primes in tuples IV: Density of small gaps
between consecutive primes
Acta Arithmetica, Tome 160 (2013) no. 1, pp. 37-53
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that given any small but fixed $\eta > 0$, a positive proportion of all gaps between consecutive primes are smaller than $\eta $ times the average gap. We show some unconditional and conditional quantitative results in this vein. In the results the dependence on $\eta $ is given explicitly, providing a new quantitative way, in addition to that of the first paper in this series, of measuring the effect of the knowledge on the level of distribution of primes.
Keywords:
prove given small fixed eta positive proportion gaps between consecutive primes smaller eta times average gap unconditional conditional quantitative results vein results dependence eta given explicitly providing quantitative addition first paper series measuring effect knowledge level distribution primes
Affiliations des auteurs :
Daniel Alan Goldston 1 ; János Pintz 2 ; Cem Yalçın Yıldırım 3
@article{10_4064_aa160_1_3,
author = {Daniel Alan Goldston and J\'anos Pintz and Cem Yal\c{c}{\i}n Y{\i}ld{\i}r{\i}m},
title = {Primes in tuples {IV:} {Density} of small gaps
between consecutive primes},
journal = {Acta Arithmetica},
pages = {37--53},
year = {2013},
volume = {160},
number = {1},
doi = {10.4064/aa160-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-1-3/}
}
TY - JOUR AU - Daniel Alan Goldston AU - János Pintz AU - Cem Yalçın Yıldırım TI - Primes in tuples IV: Density of small gaps between consecutive primes JO - Acta Arithmetica PY - 2013 SP - 37 EP - 53 VL - 160 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa160-1-3/ DO - 10.4064/aa160-1-3 LA - en ID - 10_4064_aa160_1_3 ER -
%0 Journal Article %A Daniel Alan Goldston %A János Pintz %A Cem Yalçın Yıldırım %T Primes in tuples IV: Density of small gaps between consecutive primes %J Acta Arithmetica %D 2013 %P 37-53 %V 160 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/aa160-1-3/ %R 10.4064/aa160-1-3 %G en %F 10_4064_aa160_1_3
Daniel Alan Goldston; János Pintz; Cem Yalçın Yıldırım. Primes in tuples IV: Density of small gaps between consecutive primes. Acta Arithmetica, Tome 160 (2013) no. 1, pp. 37-53. doi: 10.4064/aa160-1-3
Cité par Sources :