Normal integral bases and tameness conditions
for Kummer extensions
Acta Arithmetica, Tome 160 (2013) no. 1, pp. 1-23
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We present a detailed analysis of some properties of a general tamely ramified Kummer extension of number fields $L/K$. Our main achievement is a criterion for the existence of a normal integral basis for a general Kummer extension, which generalizes the existing results. Our approach also allows us to explicitly describe the Steinitz class of $L/K$ and we get an easy criterion for this class to be trivial. In the second part of the paper we restrict to the particular case of tame Kummer extensions $\mathbb {Q}(\zeta _m,\sqrt [m]{a_1},\dots ,\sqrt [m]{a_n})/\mathbb {Q}(\zeta _m)$ with $a_i\in \mathbb {Z}$. We prove that these extensions always have trivial Steinitz classes. We also give sufficient conditions for the existence of a normal integral basis for such extensions and an example showing that such conditions are sharp in the general case. A detailed study of the ramification produces explicit necessary and sufficient conditions on the elements $a_i$ for the extension to be tame.
Keywords:
present detailed analysis properties general tamely ramified kummer extension number fields main achievement criterion existence normal integral basis general kummer extension which generalizes existing results approach allows explicitly describe steinitz class get easy criterion class trivial second part paper restrict particular tame kummer extensions mathbb zeta sqrt dots sqrt mathbb zeta mathbb prove these extensions always have trivial steinitz classes sufficient conditions existence normal integral basis extensions example showing conditions sharp general detailed study ramification produces explicit necessary sufficient conditions elements extension tame
Affiliations des auteurs :
Ilaria Del Corso 1 ; Lorenzo Paolo Rossi 2
@article{10_4064_aa160_1_1,
author = {Ilaria Del Corso and Lorenzo Paolo Rossi},
title = {Normal integral bases and tameness conditions
for {Kummer} extensions},
journal = {Acta Arithmetica},
pages = {1--23},
year = {2013},
volume = {160},
number = {1},
doi = {10.4064/aa160-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-1-1/}
}
TY - JOUR AU - Ilaria Del Corso AU - Lorenzo Paolo Rossi TI - Normal integral bases and tameness conditions for Kummer extensions JO - Acta Arithmetica PY - 2013 SP - 1 EP - 23 VL - 160 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa160-1-1/ DO - 10.4064/aa160-1-1 LA - en ID - 10_4064_aa160_1_1 ER -
Ilaria Del Corso; Lorenzo Paolo Rossi. Normal integral bases and tameness conditions for Kummer extensions. Acta Arithmetica, Tome 160 (2013) no. 1, pp. 1-23. doi: 10.4064/aa160-1-1
Cité par Sources :