On a ternary Diophantine problem with
mixed powers of primes
Acta Arithmetica, Tome 159 (2013) no. 4, pp. 345-362
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $1 k 33 / 29$.
We prove that if $\lambda_1$, $\lambda_2$ and $\lambda_3$ are non-zero
real numbers, not all of the same sign and such that
$\lambda_1 / \lambda_2$ is irrational, and $\varpi$ is any real number,
then for any $\varepsilon > 0$ the inequality
$\vert\lambda_1 p_1 + \lambda_2 p_2^2 + \lambda_3 p_3^k +\varpi\vert
\le( \max_j p_j )^{-(33 - 29 k) / (72 k) + \varepsilon}$
has infinitely many solutions in prime variables $p_1$, $p_2$, $p_3$.
Keywords:
prove lambda lambda lambda non zero real numbers sign lambda lambda irrational varpi real number varepsilon inequality vert lambda lambda lambda varpi vert max varepsilon has infinitely many solutions prime variables
Affiliations des auteurs :
Alessandro Languasco 1 ; Alessandro Zaccagnini 2
@article{10_4064_aa159_4_4,
author = {Alessandro Languasco and Alessandro Zaccagnini},
title = {On a ternary {Diophantine} problem with
mixed powers of primes},
journal = {Acta Arithmetica},
pages = {345--362},
publisher = {mathdoc},
volume = {159},
number = {4},
year = {2013},
doi = {10.4064/aa159-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-4/}
}
TY - JOUR AU - Alessandro Languasco AU - Alessandro Zaccagnini TI - On a ternary Diophantine problem with mixed powers of primes JO - Acta Arithmetica PY - 2013 SP - 345 EP - 362 VL - 159 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-4/ DO - 10.4064/aa159-4-4 LA - en ID - 10_4064_aa159_4_4 ER -
Alessandro Languasco; Alessandro Zaccagnini. On a ternary Diophantine problem with mixed powers of primes. Acta Arithmetica, Tome 159 (2013) no. 4, pp. 345-362. doi: 10.4064/aa159-4-4
Cité par Sources :