On R. Chapman's “evil determinant”: case $p\equiv 1\pmod4$
Acta Arithmetica, Tome 159 (2013) no. 4, pp. 331-344
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $p\equiv 1\ ({\rm mod}\,4)$, we prove the formula (conjectured by R. Chapman) for the determinant of the $\frac {p+1}{2}\times \frac {p+1}{2}$ matrix $C=(C_{ij})$ with $C_{ij}=\genfrac {(}{)}{}{1}{j-i}{p}$.
Keywords:
equiv mod prove formula conjectured chapman determinant frac times frac matrix genfrac j i
Affiliations des auteurs :
Maxim Vsemirnov 1
@article{10_4064_aa159_4_3,
author = {Maxim Vsemirnov},
title = {On {R.} {Chapman's} {\textquotedblleft}evil determinant{\textquotedblright}: case $p\equiv 1\pmod4$},
journal = {Acta Arithmetica},
pages = {331--344},
publisher = {mathdoc},
volume = {159},
number = {4},
year = {2013},
doi = {10.4064/aa159-4-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-3/}
}
Maxim Vsemirnov. On R. Chapman's “evil determinant”: case $p\equiv 1\pmod4$. Acta Arithmetica, Tome 159 (2013) no. 4, pp. 331-344. doi: 10.4064/aa159-4-3
Cité par Sources :