Waring's problem for fields
Acta Arithmetica, Tome 159 (2013) no. 4, pp. 315-330.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $\textbf {K}$ is a field, denote by $P(\textbf {K}, k)$ the $a\in \textbf {K}$ which are sums of $k$th powers of elements of $\textbf {K}$, by $P^{+}(\textbf {K}, k)$ the set of $a\in \textbf {K}$ which are sums of $k$th powers of totally positive elements of $\textbf {K}$. We give some simple conditions for which there exist integers $w(\textbf {K}, k)$ and $g(\textbf {K}, k)$ such that: $a \in P(\textbf {K}, k)$ implies that $a$ is the sum of at most $w(\textbf {K}, k)$ $k$th powers; $a \in P^{+}(\textbf {K}, k)$ implies that $a$ is the sum of at most $g(\textbf {K}, k)$ totally positive $k$th powers. We apply the results to characterise functions that are sums of $ k$th powers in certain function fields $\textbf {K}(X)$.
DOI : 10.4064/aa159-4-2
Keywords: textbf field denote textbf textbf which sums kth powers elements textbf textbf set textbf which sums kth powers totally positive elements textbf simple conditions which there exist integers textbf textbf textbf implies sum textbf kth powers textbf implies sum textbf totally positive kth powers apply results characterise functions sums kth powers certain function fields textbf

William Ellison 1

1 15 allée de la Borde 33450 St Sulpice et Cameyrac France
@article{10_4064_aa159_4_2,
     author = {William Ellison},
     title = {Waring's problem for fields},
     journal = {Acta Arithmetica},
     pages = {315--330},
     publisher = {mathdoc},
     volume = {159},
     number = {4},
     year = {2013},
     doi = {10.4064/aa159-4-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-2/}
}
TY  - JOUR
AU  - William Ellison
TI  - Waring's problem for fields
JO  - Acta Arithmetica
PY  - 2013
SP  - 315
EP  - 330
VL  - 159
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-2/
DO  - 10.4064/aa159-4-2
LA  - en
ID  - 10_4064_aa159_4_2
ER  - 
%0 Journal Article
%A William Ellison
%T Waring's problem for fields
%J Acta Arithmetica
%D 2013
%P 315-330
%V 159
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-2/
%R 10.4064/aa159-4-2
%G en
%F 10_4064_aa159_4_2
William Ellison. Waring's problem for fields. Acta Arithmetica, Tome 159 (2013) no. 4, pp. 315-330. doi : 10.4064/aa159-4-2. http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-2/

Cité par Sources :