Explicit Selmer groups for cyclic covers of $\mathbb {P}^1$
Acta Arithmetica, Tome 159 (2013) no. 2, pp. 133-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any abelian variety $J$ over a global field $k$ and an isogeny $\phi \colon J \to J$, the Selmer group $\mathop{\rm Sel}\nolimits^\phi(J,k)$ is a subgroup of the Galois cohomology group ${\rm H}^1(\mathop{\rm Gal}\nolimits({k^{\rm s}}/k), J[\phi])$, defined in terms of local data. When $J$ is the Jacobian of a cyclic cover of $\mathbb{P}^1$ of prime degree $p$, the Selmer group has a quotient by a subgroup of order at most $p$ that is isomorphic to the `fake Selmer group', whose definition is more amenable to explicit computations. In this paper we define in the same setting the `explicit Selmer group', which is isomorphic to the Selmer group itself and just as amenable to explicit computations as the fake Selmer group. This is useful for describing the associated covering spaces explicitly and may thus help in developing methods for second descents on the Jacobians considered.
DOI : 10.4064/aa159-2-4
Keywords: abelian variety nbsp global field nbsp isogeny phi colon selmer group nbsp mathop sel nolimits phi subgroup galois cohomology group mathop gal nolimits phi defined terms local jacobian cyclic cover nbsp mathbb prime degree nbsp selmer group has quotient subgroup order nbsp isomorphic fake selmer group whose definition amenable explicit computations paper define setting explicit selmer group which isomorphic selmer group itself just amenable explicit computations fake selmer group useful describing associated covering spaces explicitly may help developing methods second descents jacobians considered

Michael Stoll 1 ; Ronald van Luijk 2

1 Mathematisches Institut Universität Bayreuth 95440 Bayreuth, Germany
2 Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA, Leiden, The Netherlands
@article{10_4064_aa159_2_4,
     author = {Michael Stoll and Ronald van Luijk},
     title = {Explicit {Selmer} groups for cyclic covers of~$\mathbb {P}^1$},
     journal = {Acta Arithmetica},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {159},
     number = {2},
     year = {2013},
     doi = {10.4064/aa159-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-4/}
}
TY  - JOUR
AU  - Michael Stoll
AU  - Ronald van Luijk
TI  - Explicit Selmer groups for cyclic covers of $\mathbb {P}^1$
JO  - Acta Arithmetica
PY  - 2013
SP  - 133
EP  - 148
VL  - 159
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-4/
DO  - 10.4064/aa159-2-4
LA  - en
ID  - 10_4064_aa159_2_4
ER  - 
%0 Journal Article
%A Michael Stoll
%A Ronald van Luijk
%T Explicit Selmer groups for cyclic covers of $\mathbb {P}^1$
%J Acta Arithmetica
%D 2013
%P 133-148
%V 159
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-4/
%R 10.4064/aa159-2-4
%G en
%F 10_4064_aa159_2_4
Michael Stoll; Ronald van Luijk. Explicit Selmer groups for cyclic covers of $\mathbb {P}^1$. Acta Arithmetica, Tome 159 (2013) no. 2, pp. 133-148. doi : 10.4064/aa159-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-4/

Cité par Sources :