Explicit estimates for the summatory function of $\varLambda (n)/n$ from the one of $\varLambda (n)$
Acta Arithmetica, Tome 159 (2013) no. 2, pp. 113-122
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that the error term $\sum _{\substack {n\le x}}\varLambda (n)/n-\log x+\gamma $ differs from $(\psi (x)-x)/x$ by a well controlled function. We deduce very precise numerical results from the formula obtained.
Keywords:
prove error term sum substack varlambda n log gamma differs psi x controlled function deduce precise numerical results formula obtained
Affiliations des auteurs :
Olivier Ramaré  1
@article{10_4064_aa159_2_2,
author = {Olivier Ramar\'e},
title = {Explicit estimates for the summatory function of $\varLambda (n)/n$ from the one of $\varLambda (n)$},
journal = {Acta Arithmetica},
pages = {113--122},
year = {2013},
volume = {159},
number = {2},
doi = {10.4064/aa159-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-2/}
}
TY - JOUR AU - Olivier Ramaré TI - Explicit estimates for the summatory function of $\varLambda (n)/n$ from the one of $\varLambda (n)$ JO - Acta Arithmetica PY - 2013 SP - 113 EP - 122 VL - 159 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-2/ DO - 10.4064/aa159-2-2 LA - en ID - 10_4064_aa159_2_2 ER -
Olivier Ramaré. Explicit estimates for the summatory function of $\varLambda (n)/n$ from the one of $\varLambda (n)$. Acta Arithmetica, Tome 159 (2013) no. 2, pp. 113-122. doi: 10.4064/aa159-2-2
Cité par Sources :