On the exponential local-global principle
Acta Arithmetica, Tome 159 (2013) no. 2, pp. 101-111
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Skolem conjectured that the “power sum” ${A(n)=\lambda _1 \alpha _1^n + \cdots + \lambda _m \alpha _m^n}$ satisfies a certain local-global principle. We prove this conjecture in the case when the multiplicative group generated by ${\alpha _1, \ldots , \alpha _m}$ is of rank $1$.
Keywords:
skolem conjectured power sum lambda alpha cdots lambda alpha satisfies certain local global principle prove conjecture multiplicative group generated alpha ldots alpha rank nbsp
Affiliations des auteurs :
Boris Bartolome 1 ; Yuri Bilu 2 ; Florian Luca 3
@article{10_4064_aa159_2_1,
author = {Boris Bartolome and Yuri Bilu and Florian Luca},
title = {On the exponential local-global principle},
journal = {Acta Arithmetica},
pages = {101--111},
publisher = {mathdoc},
volume = {159},
number = {2},
year = {2013},
doi = {10.4064/aa159-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-1/}
}
TY - JOUR AU - Boris Bartolome AU - Yuri Bilu AU - Florian Luca TI - On the exponential local-global principle JO - Acta Arithmetica PY - 2013 SP - 101 EP - 111 VL - 159 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-1/ DO - 10.4064/aa159-2-1 LA - en ID - 10_4064_aa159_2_1 ER -
Boris Bartolome; Yuri Bilu; Florian Luca. On the exponential local-global principle. Acta Arithmetica, Tome 159 (2013) no. 2, pp. 101-111. doi: 10.4064/aa159-2-1
Cité par Sources :