Exotic approximate identities and Maass forms
Acta Arithmetica, Tome 159 (2013) no. 1, pp. 27-46
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We obtain some approximate identities whose accuracy depends on the bottom of the discrete spectrum of the Laplace–Beltrami operator in the automorphic setting and on the symmetries of the corresponding Maass wave forms. From the geometric point of view, the underlying Riemann surfaces are classical modular curves and Shimura curves.
Keywords:
obtain approximate identities whose accuracy depends bottom discrete spectrum laplace beltrami operator automorphic setting symmetries corresponding maass wave forms geometric point view underlying riemann surfaces classical modular curves shimura curves
Affiliations des auteurs :
Fernando Chamizo 1 ; Dulcinea Raboso 2 ; Serafín Ruiz-Cabello 3
@article{10_4064_aa159_1_2,
author = {Fernando Chamizo and Dulcinea Raboso and Seraf{\'\i}n Ruiz-Cabello},
title = {Exotic approximate identities and {Maass} forms},
journal = {Acta Arithmetica},
pages = {27--46},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {2013},
doi = {10.4064/aa159-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-2/}
}
TY - JOUR AU - Fernando Chamizo AU - Dulcinea Raboso AU - Serafín Ruiz-Cabello TI - Exotic approximate identities and Maass forms JO - Acta Arithmetica PY - 2013 SP - 27 EP - 46 VL - 159 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-2/ DO - 10.4064/aa159-1-2 LA - en ID - 10_4064_aa159_1_2 ER -
Fernando Chamizo; Dulcinea Raboso; Serafín Ruiz-Cabello. Exotic approximate identities and Maass forms. Acta Arithmetica, Tome 159 (2013) no. 1, pp. 27-46. doi: 10.4064/aa159-1-2
Cité par Sources :