Upper bounds on the cardinality of higher sumsets
Acta Arithmetica, Tome 158 (2013) no. 4, pp. 299-319
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A$ and $B$ be finite sets in a commutative group. We bound $|A+hB|$ in terms of $|A|$, $|A+B|$ and $h$. We provide a submultiplicative upper bound that improves on the existing bound of Imre Ruzsa by inserting a factor that decreases with $h$.
Keywords:
finite sets commutative group bound terms provide submultiplicative upper bound improves existing bound imre ruzsa inserting factor decreases
Affiliations des auteurs :
Giorgis Petridis 1
@article{10_4064_aa158_4_1,
author = {Giorgis Petridis},
title = {Upper bounds on the cardinality of higher sumsets},
journal = {Acta Arithmetica},
pages = {299--319},
publisher = {mathdoc},
volume = {158},
number = {4},
year = {2013},
doi = {10.4064/aa158-4-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-1/}
}
Giorgis Petridis. Upper bounds on the cardinality of higher sumsets. Acta Arithmetica, Tome 158 (2013) no. 4, pp. 299-319. doi: 10.4064/aa158-4-1
Cité par Sources :