Quadratic polynomials, period polynomials, and Hecke operators
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 287-297.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any non-square $1 D\equiv 0,1$ (mod $4$), Zagier defined $$ F_{k}(D;x) :=\sum_{\substack {a,b,c \in \mathbb {Z},\, a 0\\ b^2-4ac=D }} \max(0,(ax^2+bx+c)^{k-1}). $$ Here we use the theory of periods to give identities and congruences which relate various values of $F_k(D;x).$
DOI : 10.4064/aa158-3-7
Keywords: non square equiv mod zagier defined sum substack mathbb max k here theory periods identities congruences which relate various values x

Marie Jameson 1 ; Wissam Raji 2

1 Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, U.S.A.
2 Department of Mathematics American University of Beirut Beirut, Lebanon and fellow at Center for Advanced Mathematical Sciences Beirut, Lebanon
@article{10_4064_aa158_3_7,
     author = {Marie Jameson and Wissam Raji},
     title = {Quadratic polynomials, period polynomials,
 and {Hecke} operators},
     journal = {Acta Arithmetica},
     pages = {287--297},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2013},
     doi = {10.4064/aa158-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-7/}
}
TY  - JOUR
AU  - Marie Jameson
AU  - Wissam Raji
TI  - Quadratic polynomials, period polynomials,
 and Hecke operators
JO  - Acta Arithmetica
PY  - 2013
SP  - 287
EP  - 297
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-7/
DO  - 10.4064/aa158-3-7
LA  - en
ID  - 10_4064_aa158_3_7
ER  - 
%0 Journal Article
%A Marie Jameson
%A Wissam Raji
%T Quadratic polynomials, period polynomials,
 and Hecke operators
%J Acta Arithmetica
%D 2013
%P 287-297
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-7/
%R 10.4064/aa158-3-7
%G en
%F 10_4064_aa158_3_7
Marie Jameson; Wissam Raji. Quadratic polynomials, period polynomials,
 and Hecke operators. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 287-297. doi : 10.4064/aa158-3-7. http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-7/

Cité par Sources :