Quadratic polynomials, period polynomials,
and Hecke operators
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 287-297
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For any non-square $1 D\equiv 0,1$ (mod $4$), Zagier defined $$ F_{k}(D;x) :=\sum_{\substack {a,b,c \in \mathbb {Z},\, a 0\\ b^2-4ac=D }} \max(0,(ax^2+bx+c)^{k-1}). $$
Here we use the theory of periods to give identities and congruences which relate various values of $F_k(D;x).$
Keywords:
non square equiv mod zagier defined sum substack mathbb max k here theory periods identities congruences which relate various values x
Affiliations des auteurs :
Marie Jameson 1 ; Wissam Raji 2
@article{10_4064_aa158_3_7,
author = {Marie Jameson and Wissam Raji},
title = {Quadratic polynomials, period polynomials,
and {Hecke} operators},
journal = {Acta Arithmetica},
pages = {287--297},
year = {2013},
volume = {158},
number = {3},
doi = {10.4064/aa158-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-7/}
}
Marie Jameson; Wissam Raji. Quadratic polynomials, period polynomials, and Hecke operators. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 287-297. doi: 10.4064/aa158-3-7
Cité par Sources :