A quantitative aspect of non-unique factorizations:
the Narkiewicz constants III
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 271-285
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be an algebraic number field with non-trivial class group $G$ and $\mathcal O_K$ be its ring of integers. For $k \in \mathbb N$ and some real $x \ge 1$, let $F_k (x)$ denote the number of non-zero principal ideals $a\mathcal O_K$ with norm bounded by $x$ such that $a$ has at most $k$ distinct factorizations into irreducible elements. It is well known that $F_k (x)$ behaves for $x \to \infty $ asymptotically like
$x (\log x)^{1-1/|G|} (\log\log x)^{\mathsf N_k (G)}$. We prove, among other results, that $\mathsf N_1 (C_{n_1}\oplus C_{n_2})=n_1+n_2$ for all integers $n_1,n_2$ with
$1 n_1\,|\,n_2$.
Keywords:
algebraic number field non trivial class group mathcal its ring integers mathbb real denote number non zero principal ideals mathcal norm bounded has distinct factorizations irreducible elements known behaves infty asymptotically log log log mathsf prove among other results mathsf oplus integers
Affiliations des auteurs :
Weidong Gao 1 ; Jiangtao Peng 2 ; Qinghai Zhong 1
@article{10_4064_aa158_3_6,
author = {Weidong Gao and Jiangtao Peng and Qinghai Zhong},
title = {A quantitative aspect of non-unique factorizations:
the {Narkiewicz} constants {III}},
journal = {Acta Arithmetica},
pages = {271--285},
publisher = {mathdoc},
volume = {158},
number = {3},
year = {2013},
doi = {10.4064/aa158-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-6/}
}
TY - JOUR AU - Weidong Gao AU - Jiangtao Peng AU - Qinghai Zhong TI - A quantitative aspect of non-unique factorizations: the Narkiewicz constants III JO - Acta Arithmetica PY - 2013 SP - 271 EP - 285 VL - 158 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-6/ DO - 10.4064/aa158-3-6 LA - en ID - 10_4064_aa158_3_6 ER -
%0 Journal Article %A Weidong Gao %A Jiangtao Peng %A Qinghai Zhong %T A quantitative aspect of non-unique factorizations: the Narkiewicz constants III %J Acta Arithmetica %D 2013 %P 271-285 %V 158 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-6/ %R 10.4064/aa158-3-6 %G en %F 10_4064_aa158_3_6
Weidong Gao; Jiangtao Peng; Qinghai Zhong. A quantitative aspect of non-unique factorizations: the Narkiewicz constants III. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 271-285. doi: 10.4064/aa158-3-6
Cité par Sources :