A quantitative aspect of non-unique factorizations: the Narkiewicz constants III
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 271-285.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be an algebraic number field with non-trivial class group $G$ and $\mathcal O_K$ be its ring of integers. For $k \in \mathbb N$ and some real $x \ge 1$, let $F_k (x)$ denote the number of non-zero principal ideals $a\mathcal O_K$ with norm bounded by $x$ such that $a$ has at most $k$ distinct factorizations into irreducible elements. It is well known that $F_k (x)$ behaves for $x \to \infty $ asymptotically like $x (\log x)^{1-1/|G|} (\log\log x)^{\mathsf N_k (G)}$. We prove, among other results, that $\mathsf N_1 (C_{n_1}\oplus C_{n_2})=n_1+n_2$ for all integers $n_1,n_2$ with $1 n_1\,|\,n_2$.
DOI : 10.4064/aa158-3-6
Keywords: algebraic number field non trivial class group mathcal its ring integers mathbb real denote number non zero principal ideals mathcal norm bounded has distinct factorizations irreducible elements known behaves infty asymptotically log log log mathsf prove among other results mathsf oplus integers

Weidong Gao 1 ; Jiangtao Peng 2 ; Qinghai Zhong 1

1 Center for Combinatorics Nankai University Tianjin 300071, P.R. China
2 College of Science Civil Aviation University of China Tianjin 300300, P.R. China
@article{10_4064_aa158_3_6,
     author = {Weidong Gao and Jiangtao Peng and Qinghai Zhong},
     title = {A quantitative aspect of non-unique factorizations:
 the {Narkiewicz} constants {III}},
     journal = {Acta Arithmetica},
     pages = {271--285},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2013},
     doi = {10.4064/aa158-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-6/}
}
TY  - JOUR
AU  - Weidong Gao
AU  - Jiangtao Peng
AU  - Qinghai Zhong
TI  - A quantitative aspect of non-unique factorizations:
 the Narkiewicz constants III
JO  - Acta Arithmetica
PY  - 2013
SP  - 271
EP  - 285
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-6/
DO  - 10.4064/aa158-3-6
LA  - en
ID  - 10_4064_aa158_3_6
ER  - 
%0 Journal Article
%A Weidong Gao
%A Jiangtao Peng
%A Qinghai Zhong
%T A quantitative aspect of non-unique factorizations:
 the Narkiewicz constants III
%J Acta Arithmetica
%D 2013
%P 271-285
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-6/
%R 10.4064/aa158-3-6
%G en
%F 10_4064_aa158_3_6
Weidong Gao; Jiangtao Peng; Qinghai Zhong. A quantitative aspect of non-unique factorizations:
 the Narkiewicz constants III. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 271-285. doi : 10.4064/aa158-3-6. http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-6/

Cité par Sources :