Optimal curves differing by a 3-isogeny
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 219-227
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Stein and Watkins conjectured that for a certain family of elliptic curves $E$, the $X_0(N)$-optimal curve and the $X_1(N)$-optimal curve of the isogeny class $\mathcal {C}$ containing $E$ of conductor $N$ differ by a 3-isogeny. In this paper, we show that this conjecture is true.
Keywords:
stein watkins conjectured certain family elliptic curves optimal curve optimal curve isogeny class mathcal containing conductor differ isogeny paper conjecture
Affiliations des auteurs :
Dongho Byeon 1 ; Donggeon Yhee 1
@article{10_4064_aa158_3_2,
author = {Dongho Byeon and Donggeon Yhee},
title = {Optimal curves differing by a 3-isogeny},
journal = {Acta Arithmetica},
pages = {219--227},
publisher = {mathdoc},
volume = {158},
number = {3},
year = {2013},
doi = {10.4064/aa158-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-2/}
}
Dongho Byeon; Donggeon Yhee. Optimal curves differing by a 3-isogeny. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 219-227. doi: 10.4064/aa158-3-2
Cité par Sources :