Optimal curves differing by a 3-isogeny
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 219-227.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Stein and Watkins conjectured that for a certain family of elliptic curves $E$, the $X_0(N)$-optimal curve and the $X_1(N)$-optimal curve of the isogeny class $\mathcal {C}$ containing $E$ of conductor $N$ differ by a 3-isogeny. In this paper, we show that this conjecture is true.
DOI : 10.4064/aa158-3-2
Keywords: stein watkins conjectured certain family elliptic curves optimal curve optimal curve isogeny class mathcal containing conductor differ isogeny paper conjecture

Dongho Byeon 1 ; Donggeon Yhee 1

1 Department of Mathematics Seoul National University Seoul, Korea
@article{10_4064_aa158_3_2,
     author = {Dongho Byeon and Donggeon Yhee},
     title = {Optimal curves differing by a 3-isogeny},
     journal = {Acta Arithmetica},
     pages = {219--227},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2013},
     doi = {10.4064/aa158-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-2/}
}
TY  - JOUR
AU  - Dongho Byeon
AU  - Donggeon Yhee
TI  - Optimal curves differing by a 3-isogeny
JO  - Acta Arithmetica
PY  - 2013
SP  - 219
EP  - 227
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-2/
DO  - 10.4064/aa158-3-2
LA  - en
ID  - 10_4064_aa158_3_2
ER  - 
%0 Journal Article
%A Dongho Byeon
%A Donggeon Yhee
%T Optimal curves differing by a 3-isogeny
%J Acta Arithmetica
%D 2013
%P 219-227
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-2/
%R 10.4064/aa158-3-2
%G en
%F 10_4064_aa158_3_2
Dongho Byeon; Donggeon Yhee. Optimal curves differing by a 3-isogeny. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 219-227. doi : 10.4064/aa158-3-2. http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-2/

Cité par Sources :