Self-conjugate vector partitions
and the parity of the spt-function
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 199-218
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let ${\rm spt}(n)$ denote the total number of appearances of the smallest parts in all the partitions of $n$. Recently, we found new combinatorial interpretations of congruences for the spt-function modulo $5$ and $7$. These interpretations were in terms of a restricted set of weighted vector partitions which we call $S$-partitions. We prove that the number of self-conjugate $S$-partitions, counted with a certain weight, is related to the coefficients of a certain mock theta function studied by the first author, Dyson and Hickerson. As a result we obtain an elementary $q$-series proof of Ono and Folsom's results for the parity of $ {\rm spt}(n)$. A number of related generating function identities are also obtained.
Keywords:
spt denote total number appearances smallest parts partitions recently found combinatorial interpretations congruences spt function modulo these interpretations terms restricted set weighted vector partitions which call s partitions prove number self conjugate s partitions counted certain weight related coefficients certain mock theta function studied first author dyson hickerson result obtain elementary q series proof ono folsoms results parity spt number related generating function identities obtained
Affiliations des auteurs :
George E. Andrews 1 ; Frank G. Garvan 2 ; Jie Liang 2
@article{10_4064_aa158_3_1,
author = {George E. Andrews and Frank G. Garvan and Jie Liang},
title = {Self-conjugate vector partitions
and the parity of the spt-function},
journal = {Acta Arithmetica},
pages = {199--218},
year = {2013},
volume = {158},
number = {3},
doi = {10.4064/aa158-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-1/}
}
TY - JOUR AU - George E. Andrews AU - Frank G. Garvan AU - Jie Liang TI - Self-conjugate vector partitions and the parity of the spt-function JO - Acta Arithmetica PY - 2013 SP - 199 EP - 218 VL - 158 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-1/ DO - 10.4064/aa158-3-1 LA - en ID - 10_4064_aa158_3_1 ER -
George E. Andrews; Frank G. Garvan; Jie Liang. Self-conjugate vector partitions and the parity of the spt-function. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 199-218. doi: 10.4064/aa158-3-1
Cité par Sources :