Self-conjugate vector partitions and the parity of the spt-function
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 199-218.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\rm spt}(n)$ denote the total number of appearances of the smallest parts in all the partitions of $n$. Recently, we found new combinatorial interpretations of congruences for the spt-function modulo $5$ and $7$. These interpretations were in terms of a restricted set of weighted vector partitions which we call $S$-partitions. We prove that the number of self-conjugate $S$-partitions, counted with a certain weight, is related to the coefficients of a certain mock theta function studied by the first author, Dyson and Hickerson. As a result we obtain an elementary $q$-series proof of Ono and Folsom's results for the parity of $ {\rm spt}(n)$. A number of related generating function identities are also obtained.
DOI : 10.4064/aa158-3-1
Keywords: spt denote total number appearances smallest parts partitions recently found combinatorial interpretations congruences spt function modulo these interpretations terms restricted set weighted vector partitions which call s partitions prove number self conjugate s partitions counted certain weight related coefficients certain mock theta function studied first author dyson hickerson result obtain elementary q series proof ono folsoms results parity spt number related generating function identities obtained

George E. Andrews 1 ; Frank G. Garvan 2 ; Jie Liang 2

1 Department of Mathematics The Pennsylvania State University University Park, PA 16802, U.S.A.
2 Department of Mathematics University of Florida Gainesville, FL 32611-8105, U.S.A.
@article{10_4064_aa158_3_1,
     author = {George E. Andrews and Frank G. Garvan and Jie Liang},
     title = {Self-conjugate vector partitions
 and the parity of the spt-function},
     journal = {Acta Arithmetica},
     pages = {199--218},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2013},
     doi = {10.4064/aa158-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-1/}
}
TY  - JOUR
AU  - George E. Andrews
AU  - Frank G. Garvan
AU  - Jie Liang
TI  - Self-conjugate vector partitions
 and the parity of the spt-function
JO  - Acta Arithmetica
PY  - 2013
SP  - 199
EP  - 218
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-1/
DO  - 10.4064/aa158-3-1
LA  - en
ID  - 10_4064_aa158_3_1
ER  - 
%0 Journal Article
%A George E. Andrews
%A Frank G. Garvan
%A Jie Liang
%T Self-conjugate vector partitions
 and the parity of the spt-function
%J Acta Arithmetica
%D 2013
%P 199-218
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-1/
%R 10.4064/aa158-3-1
%G en
%F 10_4064_aa158_3_1
George E. Andrews; Frank G. Garvan; Jie Liang. Self-conjugate vector partitions
 and the parity of the spt-function. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 199-218. doi : 10.4064/aa158-3-1. http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-1/

Cité par Sources :