Sturm type theorem for Siegel modular forms
of genus 2 modulo $p$
Acta Arithmetica, Tome 158 (2013) no. 2, pp. 129-139
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose that $f$ is an elliptic modular form with integral coefficients. Sturm obtained bounds for a nonnegative integer $n$ such that every Fourier coefficient of $f$ vanishes modulo a prime $p$ if the first $n$ Fourier coefficients of $f$ are zero modulo $p$. In the present note, we study analogues of Sturm's bounds for Siegel modular forms of genus 2. As an application, we study congruences involving an analogue of Atkin's $U(p)$-operator for the Fourier coefficients of Siegel modular forms of genus 2.
Mots-clés :
suppose elliptic modular form integral coefficients sturm obtained bounds nonnegative integer every fourier coefficient vanishes modulo prime first fourier coefficients zero modulo present note study analogues sturms bounds siegel modular forms genus application study congruences involving analogue atkins operator fourier coefficients siegel modular forms genus
Affiliations des auteurs :
Dohoon Choi 1 ; YoungJu Choie 2 ; Toshiyuki Kikuta 3
@article{10_4064_aa158_2_2,
author = {Dohoon Choi and YoungJu Choie and Toshiyuki Kikuta},
title = {Sturm type theorem for {Siegel} modular forms
of genus 2 modulo $p$},
journal = {Acta Arithmetica},
pages = {129--139},
publisher = {mathdoc},
volume = {158},
number = {2},
year = {2013},
doi = {10.4064/aa158-2-2},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-2-2/}
}
TY - JOUR AU - Dohoon Choi AU - YoungJu Choie AU - Toshiyuki Kikuta TI - Sturm type theorem for Siegel modular forms of genus 2 modulo $p$ JO - Acta Arithmetica PY - 2013 SP - 129 EP - 139 VL - 158 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa158-2-2/ DO - 10.4064/aa158-2-2 LA - de ID - 10_4064_aa158_2_2 ER -
%0 Journal Article %A Dohoon Choi %A YoungJu Choie %A Toshiyuki Kikuta %T Sturm type theorem for Siegel modular forms of genus 2 modulo $p$ %J Acta Arithmetica %D 2013 %P 129-139 %V 158 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa158-2-2/ %R 10.4064/aa158-2-2 %G de %F 10_4064_aa158_2_2
Dohoon Choi; YoungJu Choie; Toshiyuki Kikuta. Sturm type theorem for Siegel modular forms of genus 2 modulo $p$. Acta Arithmetica, Tome 158 (2013) no. 2, pp. 129-139. doi: 10.4064/aa158-2-2
Cité par Sources :