On non-intersecting arithmetic progressions
Acta Arithmetica, Tome 157 (2013) no. 4, pp. 381-392.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We improve known bounds for the maximum number of pairwise disjoint arithmetic progressions using distinct moduli less than $x$. We close the gap between upper and lower bounds even further under the assumption of a conjecture from combinatorics about $\varDelta $-systems (also known as sunflowers).
DOI : 10.4064/aa157-4-5
Keywords: improve known bounds maximum number pairwise disjoint arithmetic progressions using distinct moduli close gap between upper lower bounds even further under assumption conjecture combinatorics about vardelta systems known sunflowers

Régis de la Bretèche 1 ; Kevin Ford 2 ; Joseph Vandehey 2

1 Institut de Mathématiques de Jussieu UMR 7586 Université Paris Diderot – Paris 7 UFR de Mathématiques, case 7012 Bâtiment Chevaleret 75205 Paris Cedex 13, France
2 Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, IL 61801, U.S.A.
@article{10_4064_aa157_4_5,
     author = {R\'egis de la Bret\`eche and Kevin Ford and Joseph Vandehey},
     title = {On non-intersecting arithmetic progressions},
     journal = {Acta Arithmetica},
     pages = {381--392},
     publisher = {mathdoc},
     volume = {157},
     number = {4},
     year = {2013},
     doi = {10.4064/aa157-4-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa157-4-5/}
}
TY  - JOUR
AU  - Régis de la Bretèche
AU  - Kevin Ford
AU  - Joseph Vandehey
TI  - On non-intersecting arithmetic progressions
JO  - Acta Arithmetica
PY  - 2013
SP  - 381
EP  - 392
VL  - 157
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa157-4-5/
DO  - 10.4064/aa157-4-5
LA  - en
ID  - 10_4064_aa157_4_5
ER  - 
%0 Journal Article
%A Régis de la Bretèche
%A Kevin Ford
%A Joseph Vandehey
%T On non-intersecting arithmetic progressions
%J Acta Arithmetica
%D 2013
%P 381-392
%V 157
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa157-4-5/
%R 10.4064/aa157-4-5
%G en
%F 10_4064_aa157_4_5
Régis de la Bretèche; Kevin Ford; Joseph Vandehey. On non-intersecting arithmetic progressions. Acta Arithmetica, Tome 157 (2013) no. 4, pp. 381-392. doi : 10.4064/aa157-4-5. http://geodesic.mathdoc.fr/articles/10.4064/aa157-4-5/

Cité par Sources :