On non-intersecting arithmetic progressions
Acta Arithmetica, Tome 157 (2013) no. 4, pp. 381-392
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We improve known bounds for the maximum number of pairwise disjoint arithmetic progressions using distinct moduli less than $x$. We close the gap between upper and lower bounds even further under the assumption of a conjecture from combinatorics about $\varDelta $-systems (also known as sunflowers).
Keywords:
improve known bounds maximum number pairwise disjoint arithmetic progressions using distinct moduli close gap between upper lower bounds even further under assumption conjecture combinatorics about vardelta systems known sunflowers
Affiliations des auteurs :
Régis de la Bretèche 1 ; Kevin Ford 2 ; Joseph Vandehey 2
@article{10_4064_aa157_4_5,
author = {R\'egis de la Bret\`eche and Kevin Ford and Joseph Vandehey},
title = {On non-intersecting arithmetic progressions},
journal = {Acta Arithmetica},
pages = {381--392},
year = {2013},
volume = {157},
number = {4},
doi = {10.4064/aa157-4-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa157-4-5/}
}
TY - JOUR AU - Régis de la Bretèche AU - Kevin Ford AU - Joseph Vandehey TI - On non-intersecting arithmetic progressions JO - Acta Arithmetica PY - 2013 SP - 381 EP - 392 VL - 157 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa157-4-5/ DO - 10.4064/aa157-4-5 LA - en ID - 10_4064_aa157_4_5 ER -
Régis de la Bretèche; Kevin Ford; Joseph Vandehey. On non-intersecting arithmetic progressions. Acta Arithmetica, Tome 157 (2013) no. 4, pp. 381-392. doi: 10.4064/aa157-4-5
Cité par Sources :