Nonreciprocal algebraic numbers of small Mahler's measure
Acta Arithmetica, Tome 157 (2013) no. 4, pp. 357-364
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that there exist at least $cd^5$ monic irreducible nonreciprocal polynomials with integer coefficients of degree at most $d$ whose Mahler measures are smaller than $2$, where $c$ is some absolute positive constant. These polynomials are constructed as nonreciprocal divisors of some Newman hexanomials
$1+x^{r_1}+\cdots +x^{r_5}$, where the integers $1 \leq r_1 \cdots r_5 \leq d$ satisfy some restrictions including $2r_j r_{j+1}$ for $j=1,2,3,4$.
This result improves the previous lower bound $cd^3$ and seems to be closer to the correct value of this function in $d$ than the best known upper bound which is exponential in $d$.
Keywords:
prove there exist least monic irreducible nonreciprocal polynomials integer coefficients degree whose mahler measures smaller where absolute positive constant these polynomials constructed nonreciprocal divisors newman hexanomials cdots where integers leq cdots leq satisfy restrictions including result improves previous lower bound seems closer correct value function best known upper bound which exponential nbsp
Affiliations des auteurs :
Artūras Dubickas 1 ; Jonas Jankauskas 1
@article{10_4064_aa157_4_3,
author = {Art\={u}ras Dubickas and Jonas Jankauskas},
title = {Nonreciprocal algebraic numbers of small {Mahler's} measure},
journal = {Acta Arithmetica},
pages = {357--364},
publisher = {mathdoc},
volume = {157},
number = {4},
year = {2013},
doi = {10.4064/aa157-4-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa157-4-3/}
}
TY - JOUR AU - Artūras Dubickas AU - Jonas Jankauskas TI - Nonreciprocal algebraic numbers of small Mahler's measure JO - Acta Arithmetica PY - 2013 SP - 357 EP - 364 VL - 157 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa157-4-3/ DO - 10.4064/aa157-4-3 LA - en ID - 10_4064_aa157_4_3 ER -
Artūras Dubickas; Jonas Jankauskas. Nonreciprocal algebraic numbers of small Mahler's measure. Acta Arithmetica, Tome 157 (2013) no. 4, pp. 357-364. doi: 10.4064/aa157-4-3
Cité par Sources :