A family of deformations of the Riemann xi-function
Acta Arithmetica, Tome 157 (2013) no. 3, pp. 201-230
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce a family of deformations of the Riemann xi-function endowed with two continuous parameters. We show that it has rich analytic structure and that its conjectural (mild) zero-free region for some fixed parameter is a sufficient condition for the Riemann hypothesis to hold for the Riemann zeta function.
Keywords:
introduce family deformations riemann xi function endowed continuous parameters has rich analytic structure its conjectural mild zero free region fixed parameter sufficient condition riemann hypothesis riemann zeta function
Affiliations des auteurs :
Masatoshi Suzuki 1
@article{10_4064_aa157_3_1,
author = {Masatoshi Suzuki},
title = {A family of deformations of the {Riemann} xi-function},
journal = {Acta Arithmetica},
pages = {201--230},
publisher = {mathdoc},
volume = {157},
number = {3},
year = {2013},
doi = {10.4064/aa157-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa157-3-1/}
}
Masatoshi Suzuki. A family of deformations of the Riemann xi-function. Acta Arithmetica, Tome 157 (2013) no. 3, pp. 201-230. doi: 10.4064/aa157-3-1
Cité par Sources :