Sárközy's theorem for $\mathcal P$-intersective polynomials
Acta Arithmetica, Tome 157 (2013) no. 1, pp. 69-89.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa157-1-4

Alex Rice 1

1 Department of Mathematics University of Georgia Athens, GA 30602, U.S.A. and Department of Mathematics Bucknell University Lewisburg, PA 17837, U.S.A.
@article{10_4064_aa157_1_4,
     author = {Alex Rice},
     title = {S\'ark\"ozy's theorem for $\mathcal P$-intersective polynomials},
     journal = {Acta Arithmetica},
     pages = {69--89},
     publisher = {mathdoc},
     volume = {157},
     number = {1},
     year = {2013},
     doi = {10.4064/aa157-1-4},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa157-1-4/}
}
TY  - JOUR
AU  - Alex Rice
TI  - Sárközy's theorem for $\mathcal P$-intersective polynomials
JO  - Acta Arithmetica
PY  - 2013
SP  - 69
EP  - 89
VL  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa157-1-4/
DO  - 10.4064/aa157-1-4
LA  - fr
ID  - 10_4064_aa157_1_4
ER  - 
%0 Journal Article
%A Alex Rice
%T Sárközy's theorem for $\mathcal P$-intersective polynomials
%J Acta Arithmetica
%D 2013
%P 69-89
%V 157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa157-1-4/
%R 10.4064/aa157-1-4
%G fr
%F 10_4064_aa157_1_4
Alex Rice. Sárközy's theorem for $\mathcal P$-intersective polynomials. Acta Arithmetica, Tome 157 (2013) no. 1, pp. 69-89. doi : 10.4064/aa157-1-4. http://geodesic.mathdoc.fr/articles/10.4064/aa157-1-4/

Cité par Sources :