On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$
Acta Arithmetica, Tome 153 (2012) no. 4, pp. 373-392
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa153_4_3,
author = {Florian Luca},
title = {On the system of {Diophantine} equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$},
journal = {Acta Arithmetica},
pages = {373--392},
publisher = {mathdoc},
volume = {153},
number = {4},
year = {2012},
doi = {10.4064/aa153-4-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa153-4-3/}
}
TY - JOUR AU - Florian Luca TI - On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$ JO - Acta Arithmetica PY - 2012 SP - 373 EP - 392 VL - 153 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa153-4-3/ DO - 10.4064/aa153-4-3 LA - en ID - 10_4064_aa153_4_3 ER -
Florian Luca. On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$. Acta Arithmetica, Tome 153 (2012) no. 4, pp. 373-392. doi: 10.4064/aa153-4-3
Cité par Sources :