On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$
Acta Arithmetica, Tome 153 (2012) no. 4, pp. 373-392.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa153-4-3

Florian Luca 1

1 Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México and The John Knopfmacher Centre for Applicable Analysis and Number Theory University of the Witwatersrand P.O. Wits 2050, Johannesburg, South Africa
@article{10_4064_aa153_4_3,
     author = {Florian Luca},
     title = {On the system of {Diophantine} equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$},
     journal = {Acta Arithmetica},
     pages = {373--392},
     publisher = {mathdoc},
     volume = {153},
     number = {4},
     year = {2012},
     doi = {10.4064/aa153-4-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa153-4-3/}
}
TY  - JOUR
AU  - Florian Luca
TI  - On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$
JO  - Acta Arithmetica
PY  - 2012
SP  - 373
EP  - 392
VL  - 153
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa153-4-3/
DO  - 10.4064/aa153-4-3
LA  - en
ID  - 10_4064_aa153_4_3
ER  - 
%0 Journal Article
%A Florian Luca
%T On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$
%J Acta Arithmetica
%D 2012
%P 373-392
%V 153
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa153-4-3/
%R 10.4064/aa153-4-3
%G en
%F 10_4064_aa153_4_3
Florian Luca. On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^x+b^y=(m^2+1)^z$. Acta Arithmetica, Tome 153 (2012) no. 4, pp. 373-392. doi : 10.4064/aa153-4-3. http://geodesic.mathdoc.fr/articles/10.4064/aa153-4-3/

Cité par Sources :