Perfect powers in $q$-binomial coefficients
Acta Arithmetica, Tome 151 (2012) no. 3, pp. 279-292.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa151-3-4

Florian Luca 1

1 Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58180 Morelia, Michoacán, México and The John Knopfmacher Centre for Applicable Analysis and Number Theory University of the Witwatersrand P.O. Box 2050 Johannesburg, South Africa
@article{10_4064_aa151_3_4,
     author = {Florian Luca},
     title = {Perfect powers in $q$-binomial coefficients},
     journal = {Acta Arithmetica},
     pages = {279--292},
     publisher = {mathdoc},
     volume = {151},
     number = {3},
     year = {2012},
     doi = {10.4064/aa151-3-4},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa151-3-4/}
}
TY  - JOUR
AU  - Florian Luca
TI  - Perfect powers in $q$-binomial coefficients
JO  - Acta Arithmetica
PY  - 2012
SP  - 279
EP  - 292
VL  - 151
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa151-3-4/
DO  - 10.4064/aa151-3-4
LA  - fr
ID  - 10_4064_aa151_3_4
ER  - 
%0 Journal Article
%A Florian Luca
%T Perfect powers in $q$-binomial coefficients
%J Acta Arithmetica
%D 2012
%P 279-292
%V 151
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa151-3-4/
%R 10.4064/aa151-3-4
%G fr
%F 10_4064_aa151_3_4
Florian Luca. Perfect powers in $q$-binomial coefficients. Acta Arithmetica, Tome 151 (2012) no. 3, pp. 279-292. doi : 10.4064/aa151-3-4. http://geodesic.mathdoc.fr/articles/10.4064/aa151-3-4/

Cité par Sources :