On some generalizations of the diophantine equation $s(1^{k}+2^{k}+\cdots +x^{k})+r=dy^{n}$
Acta Arithmetica, Tome 151 (2012) no. 2, pp. 201-216.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa151-2-4

Csaba Rakaczki 1

1 Number Theory Research Group of the Hungarian Academy of Sciences Institute of Mathematics University of Debrecen H-4010 Debrecen, P.O.B. 12, Hungary and Institute of Mathematics University of Miskolc H-3515 Miskolc Campus, Hungary
@article{10_4064_aa151_2_4,
     author = {Csaba Rakaczki},
     title = {On some generalizations of the diophantine equation
$s(1^{k}+2^{k}+\cdots +x^{k})+r=dy^{n}$},
     journal = {Acta Arithmetica},
     pages = {201--216},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {2012},
     doi = {10.4064/aa151-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa151-2-4/}
}
TY  - JOUR
AU  - Csaba Rakaczki
TI  - On some generalizations of the diophantine equation
$s(1^{k}+2^{k}+\cdots +x^{k})+r=dy^{n}$
JO  - Acta Arithmetica
PY  - 2012
SP  - 201
EP  - 216
VL  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa151-2-4/
DO  - 10.4064/aa151-2-4
LA  - en
ID  - 10_4064_aa151_2_4
ER  - 
%0 Journal Article
%A Csaba Rakaczki
%T On some generalizations of the diophantine equation
$s(1^{k}+2^{k}+\cdots +x^{k})+r=dy^{n}$
%J Acta Arithmetica
%D 2012
%P 201-216
%V 151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa151-2-4/
%R 10.4064/aa151-2-4
%G en
%F 10_4064_aa151_2_4
Csaba Rakaczki. On some generalizations of the diophantine equation
$s(1^{k}+2^{k}+\cdots +x^{k})+r=dy^{n}$. Acta Arithmetica, Tome 151 (2012) no. 2, pp. 201-216. doi : 10.4064/aa151-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa151-2-4/

Cité par Sources :