Function fields with class number indivisible by a prime $\ell $
Acta Arithmetica, Tome 150 (2011) no. 4, pp. 339-359.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa150-4-2

Michael Daub 1 ; Jaclyn Lang 2 ; Mona Merling 3 ; Allison M. Pacelli 4 ; Natee Pitiwan 2 ; Michael Rosen 5

1 Department of Mathematics University of California, Berkeley 970 Evans Hall #3840 Berkeley, CA 94720, U.S.A.
2 Department of Mathematics UCLA Box 951555 Los Angeles, CA 90095, U.S.A.
3 Department of Mathematics The University of Chicago 5734 S. University Avenue Chicago, IL 60637, U.S.A.
4 Department of Mathematics and Statistics Williams College Williamstown, MA 01267, U.S.A.
5 Department of Mathematics Brown University Box 1917 Providence, RI 02912, U.S.A.
@article{10_4064_aa150_4_2,
     author = {Michael Daub and Jaclyn Lang and Mona Merling and Allison M. Pacelli and Natee Pitiwan and Michael Rosen},
     title = {Function fields with class number indivisible by a prime $\ell $},
     journal = {Acta Arithmetica},
     pages = {339--359},
     publisher = {mathdoc},
     volume = {150},
     number = {4},
     year = {2011},
     doi = {10.4064/aa150-4-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa150-4-2/}
}
TY  - JOUR
AU  - Michael Daub
AU  - Jaclyn Lang
AU  - Mona Merling
AU  - Allison M. Pacelli
AU  - Natee Pitiwan
AU  - Michael Rosen
TI  - Function fields with class number indivisible by a prime $\ell $
JO  - Acta Arithmetica
PY  - 2011
SP  - 339
EP  - 359
VL  - 150
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa150-4-2/
DO  - 10.4064/aa150-4-2
LA  - en
ID  - 10_4064_aa150_4_2
ER  - 
%0 Journal Article
%A Michael Daub
%A Jaclyn Lang
%A Mona Merling
%A Allison M. Pacelli
%A Natee Pitiwan
%A Michael Rosen
%T Function fields with class number indivisible by a prime $\ell $
%J Acta Arithmetica
%D 2011
%P 339-359
%V 150
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa150-4-2/
%R 10.4064/aa150-4-2
%G en
%F 10_4064_aa150_4_2
Michael Daub; Jaclyn Lang; Mona Merling; Allison M. Pacelli; Natee Pitiwan; Michael Rosen. Function fields with class number indivisible by a prime $\ell $. Acta Arithmetica, Tome 150 (2011) no. 4, pp. 339-359. doi : 10.4064/aa150-4-2. http://geodesic.mathdoc.fr/articles/10.4064/aa150-4-2/

Cité par Sources :