Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Michael Daub 1 ; Jaclyn Lang 2 ; Mona Merling 3 ; Allison M. Pacelli 4 ; Natee Pitiwan 2 ; Michael Rosen 5
@article{10_4064_aa150_4_2, author = {Michael Daub and Jaclyn Lang and Mona Merling and Allison M. Pacelli and Natee Pitiwan and Michael Rosen}, title = {Function fields with class number indivisible by a prime $\ell $}, journal = {Acta Arithmetica}, pages = {339--359}, publisher = {mathdoc}, volume = {150}, number = {4}, year = {2011}, doi = {10.4064/aa150-4-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa150-4-2/} }
TY - JOUR AU - Michael Daub AU - Jaclyn Lang AU - Mona Merling AU - Allison M. Pacelli AU - Natee Pitiwan AU - Michael Rosen TI - Function fields with class number indivisible by a prime $\ell $ JO - Acta Arithmetica PY - 2011 SP - 339 EP - 359 VL - 150 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa150-4-2/ DO - 10.4064/aa150-4-2 LA - en ID - 10_4064_aa150_4_2 ER -
%0 Journal Article %A Michael Daub %A Jaclyn Lang %A Mona Merling %A Allison M. Pacelli %A Natee Pitiwan %A Michael Rosen %T Function fields with class number indivisible by a prime $\ell $ %J Acta Arithmetica %D 2011 %P 339-359 %V 150 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa150-4-2/ %R 10.4064/aa150-4-2 %G en %F 10_4064_aa150_4_2
Michael Daub; Jaclyn Lang; Mona Merling; Allison M. Pacelli; Natee Pitiwan; Michael Rosen. Function fields with class number indivisible by a prime $\ell $. Acta Arithmetica, Tome 150 (2011) no. 4, pp. 339-359. doi : 10.4064/aa150-4-2. http://geodesic.mathdoc.fr/articles/10.4064/aa150-4-2/
Cité par Sources :