Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa149_3_5, author = {Zhi-Hong Sun}, title = {Congruences for $(A+\sqrt {A^2+mB^2})^{(p-1)/2}$ and $(b+\sqrt{a^2+b^2})^{(p-1)/4}\pmod p$}, journal = {Acta Arithmetica}, pages = {275--296}, publisher = {mathdoc}, volume = {149}, number = {3}, year = {2011}, doi = {10.4064/aa149-3-5}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa149-3-5/} }
TY - JOUR AU - Zhi-Hong Sun TI - Congruences for $(A+\sqrt {A^2+mB^2})^{(p-1)/2}$ and $(b+\sqrt{a^2+b^2})^{(p-1)/4}\pmod p$ JO - Acta Arithmetica PY - 2011 SP - 275 EP - 296 VL - 149 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa149-3-5/ DO - 10.4064/aa149-3-5 LA - en ID - 10_4064_aa149_3_5 ER -
Zhi-Hong Sun. Congruences for $(A+\sqrt {A^2+mB^2})^{(p-1)/2}$ and $(b+\sqrt{a^2+b^2})^{(p-1)/4}\pmod p$. Acta Arithmetica, Tome 149 (2011) no. 3, pp. 275-296. doi : 10.4064/aa149-3-5. http://geodesic.mathdoc.fr/articles/10.4064/aa149-3-5/
Cité par Sources :