Congruences for $(A+\sqrt {A^2+mB^2})^{(p-1)/2}$ and
$(b+\sqrt{a^2+b^2})^{(p-1)/4}\pmod p$
Acta Arithmetica, Tome 149 (2011) no. 3, pp. 275-296
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa149_3_5,
author = {Zhi-Hong Sun},
title = {Congruences for $(A+\sqrt {A^2+mB^2})^{(p-1)/2}$ and
$(b+\sqrt{a^2+b^2})^{(p-1)/4}\pmod p$},
journal = {Acta Arithmetica},
pages = {275--296},
year = {2011},
volume = {149},
number = {3},
doi = {10.4064/aa149-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa149-3-5/}
}
TY - JOUR
AU - Zhi-Hong Sun
TI - Congruences for $(A+\sqrt {A^2+mB^2})^{(p-1)/2}$ and
$(b+\sqrt{a^2+b^2})^{(p-1)/4}\pmod p$
JO - Acta Arithmetica
PY - 2011
SP - 275
EP - 296
VL - 149
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa149-3-5/
DO - 10.4064/aa149-3-5
LA - en
ID - 10_4064_aa149_3_5
ER -
Zhi-Hong Sun. Congruences for $(A+\sqrt {A^2+mB^2})^{(p-1)/2}$ and
$(b+\sqrt{a^2+b^2})^{(p-1)/4}\pmod p$. Acta Arithmetica, Tome 149 (2011) no. 3, pp. 275-296. doi: 10.4064/aa149-3-5
Cité par Sources :