On the parity of $k$-th powers modulo $p$. A generalization of a problem of Lehmer
Acta Arithmetica, Tome 147 (2011) no. 2, pp. 173-203.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa147-2-6

Jean Bourgain 1 ; Todd Cochrane 2 ; Jennifer Paulhus 3 ; Christopher Pinner 2

1 School of Mathematics Institute of Advanced Study Princeton, NJ 08540, U.S.A.
2 Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A.
3 Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A. and Department of Mathematical Sciences Villanova University 800 Lancaster Avenue, SAC305 Villanova, PA 19085-1699, U.S.A.
@article{10_4064_aa147_2_6,
     author = {Jean Bourgain and Todd Cochrane and Jennifer Paulhus and Christopher Pinner},
     title = {On the parity of $k$-th powers modulo $p$.
 {A} generalization of a problem of {Lehmer}},
     journal = {Acta Arithmetica},
     pages = {173--203},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2011},
     doi = {10.4064/aa147-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa147-2-6/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Todd Cochrane
AU  - Jennifer Paulhus
AU  - Christopher Pinner
TI  - On the parity of $k$-th powers modulo $p$.
 A generalization of a problem of Lehmer
JO  - Acta Arithmetica
PY  - 2011
SP  - 173
EP  - 203
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa147-2-6/
DO  - 10.4064/aa147-2-6
LA  - en
ID  - 10_4064_aa147_2_6
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Todd Cochrane
%A Jennifer Paulhus
%A Christopher Pinner
%T On the parity of $k$-th powers modulo $p$.
 A generalization of a problem of Lehmer
%J Acta Arithmetica
%D 2011
%P 173-203
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa147-2-6/
%R 10.4064/aa147-2-6
%G en
%F 10_4064_aa147_2_6
Jean Bourgain; Todd Cochrane; Jennifer Paulhus; Christopher Pinner. On the parity of $k$-th powers modulo $p$.
 A generalization of a problem of Lehmer. Acta Arithmetica, Tome 147 (2011) no. 2, pp. 173-203. doi : 10.4064/aa147-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa147-2-6/

Cité par Sources :