Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Jean Bourgain 1 ; Todd Cochrane 2 ; Jennifer Paulhus 3 ; Christopher Pinner 2
@article{10_4064_aa147_2_6, author = {Jean Bourgain and Todd Cochrane and Jennifer Paulhus and Christopher Pinner}, title = {On the parity of $k$-th powers modulo $p$. {A} generalization of a problem of {Lehmer}}, journal = {Acta Arithmetica}, pages = {173--203}, publisher = {mathdoc}, volume = {147}, number = {2}, year = {2011}, doi = {10.4064/aa147-2-6}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa147-2-6/} }
TY - JOUR AU - Jean Bourgain AU - Todd Cochrane AU - Jennifer Paulhus AU - Christopher Pinner TI - On the parity of $k$-th powers modulo $p$. A generalization of a problem of Lehmer JO - Acta Arithmetica PY - 2011 SP - 173 EP - 203 VL - 147 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa147-2-6/ DO - 10.4064/aa147-2-6 LA - en ID - 10_4064_aa147_2_6 ER -
%0 Journal Article %A Jean Bourgain %A Todd Cochrane %A Jennifer Paulhus %A Christopher Pinner %T On the parity of $k$-th powers modulo $p$. A generalization of a problem of Lehmer %J Acta Arithmetica %D 2011 %P 173-203 %V 147 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa147-2-6/ %R 10.4064/aa147-2-6 %G en %F 10_4064_aa147_2_6
Jean Bourgain; Todd Cochrane; Jennifer Paulhus; Christopher Pinner. On the parity of $k$-th powers modulo $p$. A generalization of a problem of Lehmer. Acta Arithmetica, Tome 147 (2011) no. 2, pp. 173-203. doi : 10.4064/aa147-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa147-2-6/
Cité par Sources :