Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa147_1_5, author = {Zhi-Hong Sun}, title = {On the number of representations of $n$ by $ax^2+by(y-1)/2$, $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$}, journal = {Acta Arithmetica}, pages = {81--100}, publisher = {mathdoc}, volume = {147}, number = {1}, year = {2011}, doi = {10.4064/aa147-1-5}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/} }
TY - JOUR AU - Zhi-Hong Sun TI - On the number of representations of $n$ by $ax^2+by(y-1)/2$, $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$ JO - Acta Arithmetica PY - 2011 SP - 81 EP - 100 VL - 147 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/ DO - 10.4064/aa147-1-5 LA - en ID - 10_4064_aa147_1_5 ER -
%0 Journal Article %A Zhi-Hong Sun %T On the number of representations of $n$ by $ax^2+by(y-1)/2$, $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$ %J Acta Arithmetica %D 2011 %P 81-100 %V 147 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/ %R 10.4064/aa147-1-5 %G en %F 10_4064_aa147_1_5
Zhi-Hong Sun. On the number of representations of $n$ by $ax^2+by(y-1)/2$, $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$. Acta Arithmetica, Tome 147 (2011) no. 1, pp. 81-100. doi : 10.4064/aa147-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/
Cité par Sources :