On the number of representations of $n$ by $ax^2+by(y-1)/2$, $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$
Acta Arithmetica, Tome 147 (2011) no. 1, pp. 81-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa147-1-5

Zhi-Hong Sun 1

1 School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223001, P.R. China
@article{10_4064_aa147_1_5,
     author = {Zhi-Hong Sun},
     title = {On the number of representations of $n$ by $ax^2+by(y-1)/2$,
 $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$},
     journal = {Acta Arithmetica},
     pages = {81--100},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2011},
     doi = {10.4064/aa147-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/}
}
TY  - JOUR
AU  - Zhi-Hong Sun
TI  - On the number of representations of $n$ by $ax^2+by(y-1)/2$,
 $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$
JO  - Acta Arithmetica
PY  - 2011
SP  - 81
EP  - 100
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/
DO  - 10.4064/aa147-1-5
LA  - en
ID  - 10_4064_aa147_1_5
ER  - 
%0 Journal Article
%A Zhi-Hong Sun
%T On the number of representations of $n$ by $ax^2+by(y-1)/2$,
 $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$
%J Acta Arithmetica
%D 2011
%P 81-100
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/
%R 10.4064/aa147-1-5
%G en
%F 10_4064_aa147_1_5
Zhi-Hong Sun. On the number of representations of $n$ by $ax^2+by(y-1)/2$,
 $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$. Acta Arithmetica, Tome 147 (2011) no. 1, pp. 81-100. doi : 10.4064/aa147-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/

Cité par Sources :