On the number of representations of $n$ by $ax^2+by(y-1)/2$,
$ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$
Acta Arithmetica, Tome 147 (2011) no. 1, pp. 81-100
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa147_1_5,
author = {Zhi-Hong Sun},
title = {On the number of representations of $n$ by $ax^2+by(y-1)/2$,
$ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$},
journal = {Acta Arithmetica},
pages = {81--100},
year = {2011},
volume = {147},
number = {1},
doi = {10.4064/aa147-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/}
}
TY - JOUR AU - Zhi-Hong Sun TI - On the number of representations of $n$ by $ax^2+by(y-1)/2$, $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$ JO - Acta Arithmetica PY - 2011 SP - 81 EP - 100 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa147-1-5/ DO - 10.4064/aa147-1-5 LA - en ID - 10_4064_aa147_1_5 ER -
Zhi-Hong Sun. On the number of representations of $n$ by $ax^2+by(y-1)/2$, $ax^2+by(3y-1)/2$ and $ax(x-1)/2+by(3y-1)/2$. Acta Arithmetica, Tome 147 (2011) no. 1, pp. 81-100. doi: 10.4064/aa147-1-5
Cité par Sources :