Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
S. Ballet 1 ; C. Ritzenthaler 1 ; R. Rolland 1
@article{10_4064_aa143_4_4, author = {S. Ballet and C. Ritzenthaler and R. Rolland}, title = {On the existence of dimension zero divisors in algebraic function fields defined over $\mathbb{F}_q$}, journal = {Acta Arithmetica}, pages = {377--392}, publisher = {mathdoc}, volume = {143}, number = {4}, year = {2010}, doi = {10.4064/aa143-4-4}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa143-4-4/} }
TY - JOUR AU - S. Ballet AU - C. Ritzenthaler AU - R. Rolland TI - On the existence of dimension zero divisors in algebraic function fields defined over $\mathbb{F}_q$ JO - Acta Arithmetica PY - 2010 SP - 377 EP - 392 VL - 143 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa143-4-4/ DO - 10.4064/aa143-4-4 LA - en ID - 10_4064_aa143_4_4 ER -
%0 Journal Article %A S. Ballet %A C. Ritzenthaler %A R. Rolland %T On the existence of dimension zero divisors in algebraic function fields defined over $\mathbb{F}_q$ %J Acta Arithmetica %D 2010 %P 377-392 %V 143 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa143-4-4/ %R 10.4064/aa143-4-4 %G en %F 10_4064_aa143_4_4
S. Ballet; C. Ritzenthaler; R. Rolland. On the existence of dimension zero divisors in algebraic function fields defined over $\mathbb{F}_q$. Acta Arithmetica, Tome 143 (2010) no. 4, pp. 377-392. doi : 10.4064/aa143-4-4. http://geodesic.mathdoc.fr/articles/10.4064/aa143-4-4/
Cité par Sources :