On the existence of dimension zero divisors in algebraic function fields defined over $\mathbb{F}_q$
Acta Arithmetica, Tome 143 (2010) no. 4, pp. 377-392.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa143-4-4

S. Ballet 1 ; C. Ritzenthaler 1 ; R. Rolland 1

1 Institut de Mathématiques de Luminy Case 930 F-13288 Marseille Cedex 9, France
@article{10_4064_aa143_4_4,
     author = {S. Ballet and C. Ritzenthaler and R. Rolland},
     title = {On the existence of dimension zero divisors
in algebraic function fields defined over $\mathbb{F}_q$},
     journal = {Acta Arithmetica},
     pages = {377--392},
     publisher = {mathdoc},
     volume = {143},
     number = {4},
     year = {2010},
     doi = {10.4064/aa143-4-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa143-4-4/}
}
TY  - JOUR
AU  - S. Ballet
AU  - C. Ritzenthaler
AU  - R. Rolland
TI  - On the existence of dimension zero divisors
in algebraic function fields defined over $\mathbb{F}_q$
JO  - Acta Arithmetica
PY  - 2010
SP  - 377
EP  - 392
VL  - 143
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa143-4-4/
DO  - 10.4064/aa143-4-4
LA  - en
ID  - 10_4064_aa143_4_4
ER  - 
%0 Journal Article
%A S. Ballet
%A C. Ritzenthaler
%A R. Rolland
%T On the existence of dimension zero divisors
in algebraic function fields defined over $\mathbb{F}_q$
%J Acta Arithmetica
%D 2010
%P 377-392
%V 143
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa143-4-4/
%R 10.4064/aa143-4-4
%G en
%F 10_4064_aa143_4_4
S. Ballet; C. Ritzenthaler; R. Rolland. On the existence of dimension zero divisors
in algebraic function fields defined over $\mathbb{F}_q$. Acta Arithmetica, Tome 143 (2010) no. 4, pp. 377-392. doi : 10.4064/aa143-4-4. http://geodesic.mathdoc.fr/articles/10.4064/aa143-4-4/

Cité par Sources :