Infinite series identities from modular transformation formulas that stem from generalized Eisenstein series
Acta Arithmetica, Tome 141 (2010) no. 3, pp. 241-273.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa141-3-2

Sung-Geun Lim 1

1 Department of Mathematics Pohang University of Science and Technology San 31, Hyoja-dong, Namgu Pohang, Kyungbuk 790-784, Republic of Korea
@article{10_4064_aa141_3_2,
     author = {Sung-Geun Lim},
     title = {Infinite series identities from modular transformation formulas that stem from generalized
 {Eisenstein} series},
     journal = {Acta Arithmetica},
     pages = {241--273},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {2010},
     doi = {10.4064/aa141-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/}
}
TY  - JOUR
AU  - Sung-Geun Lim
TI  - Infinite series identities from modular transformation formulas that stem from generalized
 Eisenstein series
JO  - Acta Arithmetica
PY  - 2010
SP  - 241
EP  - 273
VL  - 141
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/
DO  - 10.4064/aa141-3-2
LA  - en
ID  - 10_4064_aa141_3_2
ER  - 
%0 Journal Article
%A Sung-Geun Lim
%T Infinite series identities from modular transformation formulas that stem from generalized
 Eisenstein series
%J Acta Arithmetica
%D 2010
%P 241-273
%V 141
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/
%R 10.4064/aa141-3-2
%G en
%F 10_4064_aa141_3_2
Sung-Geun Lim. Infinite series identities from modular transformation formulas that stem from generalized
 Eisenstein series. Acta Arithmetica, Tome 141 (2010) no. 3, pp. 241-273. doi : 10.4064/aa141-3-2. http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/

Cité par Sources :