Infinite series identities from modular transformation formulas that stem from generalized
Eisenstein series
Acta Arithmetica, Tome 141 (2010) no. 3, pp. 241-273
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa141_3_2,
author = {Sung-Geun Lim},
title = {Infinite series identities from modular transformation formulas that stem from generalized
{Eisenstein} series},
journal = {Acta Arithmetica},
pages = {241--273},
publisher = {mathdoc},
volume = {141},
number = {3},
year = {2010},
doi = {10.4064/aa141-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/}
}
TY - JOUR AU - Sung-Geun Lim TI - Infinite series identities from modular transformation formulas that stem from generalized Eisenstein series JO - Acta Arithmetica PY - 2010 SP - 241 EP - 273 VL - 141 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/ DO - 10.4064/aa141-3-2 LA - en ID - 10_4064_aa141_3_2 ER -
%0 Journal Article %A Sung-Geun Lim %T Infinite series identities from modular transformation formulas that stem from generalized Eisenstein series %J Acta Arithmetica %D 2010 %P 241-273 %V 141 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/ %R 10.4064/aa141-3-2 %G en %F 10_4064_aa141_3_2
Sung-Geun Lim. Infinite series identities from modular transformation formulas that stem from generalized Eisenstein series. Acta Arithmetica, Tome 141 (2010) no. 3, pp. 241-273. doi: 10.4064/aa141-3-2
Cité par Sources :