Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa141_3_2, author = {Sung-Geun Lim}, title = {Infinite series identities from modular transformation formulas that stem from generalized {Eisenstein} series}, journal = {Acta Arithmetica}, pages = {241--273}, publisher = {mathdoc}, volume = {141}, number = {3}, year = {2010}, doi = {10.4064/aa141-3-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/} }
TY - JOUR AU - Sung-Geun Lim TI - Infinite series identities from modular transformation formulas that stem from generalized Eisenstein series JO - Acta Arithmetica PY - 2010 SP - 241 EP - 273 VL - 141 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/ DO - 10.4064/aa141-3-2 LA - en ID - 10_4064_aa141_3_2 ER -
%0 Journal Article %A Sung-Geun Lim %T Infinite series identities from modular transformation formulas that stem from generalized Eisenstein series %J Acta Arithmetica %D 2010 %P 241-273 %V 141 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/ %R 10.4064/aa141-3-2 %G en %F 10_4064_aa141_3_2
Sung-Geun Lim. Infinite series identities from modular transformation formulas that stem from generalized Eisenstein series. Acta Arithmetica, Tome 141 (2010) no. 3, pp. 241-273. doi : 10.4064/aa141-3-2. http://geodesic.mathdoc.fr/articles/10.4064/aa141-3-2/
Cité par Sources :