Metrical theorems for inhomogeneous Diophantine approximation in positive characteristic
Acta Arithmetica, Tome 141 (2010) no. 2, pp. 191-208.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa141-2-4

Michael Fuchs 1

1 Department of Applied Mathematics National Chiao Tung University 1001 Ta Hsue Road Hsinchu, 300, Taiwan
@article{10_4064_aa141_2_4,
     author = {Michael Fuchs},
     title = {Metrical theorems for inhomogeneous {Diophantine
} approximation in positive characteristic},
     journal = {Acta Arithmetica},
     pages = {191--208},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2010},
     doi = {10.4064/aa141-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa141-2-4/}
}
TY  - JOUR
AU  - Michael Fuchs
TI  - Metrical theorems for inhomogeneous Diophantine
 approximation in positive characteristic
JO  - Acta Arithmetica
PY  - 2010
SP  - 191
EP  - 208
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa141-2-4/
DO  - 10.4064/aa141-2-4
LA  - en
ID  - 10_4064_aa141_2_4
ER  - 
%0 Journal Article
%A Michael Fuchs
%T Metrical theorems for inhomogeneous Diophantine
 approximation in positive characteristic
%J Acta Arithmetica
%D 2010
%P 191-208
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa141-2-4/
%R 10.4064/aa141-2-4
%G en
%F 10_4064_aa141_2_4
Michael Fuchs. Metrical theorems for inhomogeneous Diophantine
 approximation in positive characteristic. Acta Arithmetica, Tome 141 (2010) no. 2, pp. 191-208. doi : 10.4064/aa141-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa141-2-4/

Cité par Sources :