Hybrid joint universality theorem for Dirichlet $L$-functions
Acta Arithmetica, Tome 141 (2010) no. 1, pp. 59-72.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa141-1-3

Łukasz Pańkowski 1

1 Faculty of Mathematics and Computer Science Adam Mickiewicz University Umultowska 87 61-614 Poznań, Poland
@article{10_4064_aa141_1_3,
     author = {{\L}ukasz Pa\'nkowski},
     title = {Hybrid joint universality theorem for {Dirichlet} $L$-functions},
     journal = {Acta Arithmetica},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2010},
     doi = {10.4064/aa141-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa141-1-3/}
}
TY  - JOUR
AU  - Łukasz Pańkowski
TI  - Hybrid joint universality theorem for Dirichlet $L$-functions
JO  - Acta Arithmetica
PY  - 2010
SP  - 59
EP  - 72
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa141-1-3/
DO  - 10.4064/aa141-1-3
LA  - en
ID  - 10_4064_aa141_1_3
ER  - 
%0 Journal Article
%A Łukasz Pańkowski
%T Hybrid joint universality theorem for Dirichlet $L$-functions
%J Acta Arithmetica
%D 2010
%P 59-72
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa141-1-3/
%R 10.4064/aa141-1-3
%G en
%F 10_4064_aa141_1_3
Łukasz Pańkowski. Hybrid joint universality theorem for Dirichlet $L$-functions. Acta Arithmetica, Tome 141 (2010) no. 1, pp. 59-72. doi : 10.4064/aa141-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa141-1-3/

Cité par Sources :