On the number of representations of integers as the sum of $k$ terms
Acta Arithmetica, Tome 139 (2009) no. 4, pp. 395-406.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa139-4-6

Sándor Z. Kiss 1

1 Department of Algebra and Number Theory Eötvös Loránd University Pázmány Péter Sétány 1//c H-1117 Budapest, Hungary
@article{10_4064_aa139_4_6,
     author = {S\'andor Z. Kiss},
     title = {On the number of representations of integers
 as the sum of $k$ terms},
     journal = {Acta Arithmetica},
     pages = {395--406},
     publisher = {mathdoc},
     volume = {139},
     number = {4},
     year = {2009},
     doi = {10.4064/aa139-4-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa139-4-6/}
}
TY  - JOUR
AU  - Sándor Z. Kiss
TI  - On the number of representations of integers
 as the sum of $k$ terms
JO  - Acta Arithmetica
PY  - 2009
SP  - 395
EP  - 406
VL  - 139
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa139-4-6/
DO  - 10.4064/aa139-4-6
LA  - en
ID  - 10_4064_aa139_4_6
ER  - 
%0 Journal Article
%A Sándor Z. Kiss
%T On the number of representations of integers
 as the sum of $k$ terms
%J Acta Arithmetica
%D 2009
%P 395-406
%V 139
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa139-4-6/
%R 10.4064/aa139-4-6
%G en
%F 10_4064_aa139_4_6
Sándor Z. Kiss. On the number of representations of integers
 as the sum of $k$ terms. Acta Arithmetica, Tome 139 (2009) no. 4, pp. 395-406. doi : 10.4064/aa139-4-6. http://geodesic.mathdoc.fr/articles/10.4064/aa139-4-6/

Cité par Sources :