On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$
Acta Arithmetica, Tome 139 (2009) no. 1, pp. 57-63
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
Michael Stoll 1 ; P. G. Walsh 2 ; Pingzhi Yuan 3
@article{10_4064_aa139_1_5,
author = {Michael Stoll and P. G. Walsh and Pingzhi Yuan},
title = {On the {Diophantine} equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$},
journal = {Acta Arithmetica},
pages = {57--63},
publisher = {mathdoc},
volume = {139},
number = {1},
year = {2009},
doi = {10.4064/aa139-1-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/}
}
TY - JOUR
AU - Michael Stoll
AU - P. G. Walsh
AU - Pingzhi Yuan
TI - On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$
JO - Acta Arithmetica
PY - 2009
SP - 57
EP - 63
VL - 139
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/
DO - 10.4064/aa139-1-5
LA - fr
ID - 10_4064_aa139_1_5
ER -
Michael Stoll; P. G. Walsh; Pingzhi Yuan. On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$. Acta Arithmetica, Tome 139 (2009) no. 1, pp. 57-63. doi: 10.4064/aa139-1-5
Cité par Sources :