On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$
Acta Arithmetica, Tome 139 (2009) no. 1, pp. 57-63.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa139-1-5

Michael Stoll 1 ; P. G. Walsh 2 ; Pingzhi Yuan 3

1 Mathematisches Institut Universität Bayreuth 95440 Bayreuth, Germany
2 Department of Mathematics University of Ottawa 585 King Edward St. Ottawa, Ontario, Canada, K1N 6N5
3 School of Mathematics South China Normal University Guangzhou, 510631, P.R. China
@article{10_4064_aa139_1_5,
     author = {Michael Stoll and P. G. Walsh and Pingzhi Yuan},
     title = {On the {Diophantine} equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$},
     journal = {Acta Arithmetica},
     pages = {57--63},
     publisher = {mathdoc},
     volume = {139},
     number = {1},
     year = {2009},
     doi = {10.4064/aa139-1-5},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/}
}
TY  - JOUR
AU  - Michael Stoll
AU  - P. G. Walsh
AU  - Pingzhi Yuan
TI  - On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$
JO  - Acta Arithmetica
PY  - 2009
SP  - 57
EP  - 63
VL  - 139
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/
DO  - 10.4064/aa139-1-5
LA  - fr
ID  - 10_4064_aa139_1_5
ER  - 
%0 Journal Article
%A Michael Stoll
%A P. G. Walsh
%A Pingzhi Yuan
%T On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$
%J Acta Arithmetica
%D 2009
%P 57-63
%V 139
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/
%R 10.4064/aa139-1-5
%G fr
%F 10_4064_aa139_1_5
Michael Stoll; P. G. Walsh; Pingzhi Yuan. On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$. Acta Arithmetica, Tome 139 (2009) no. 1, pp. 57-63. doi : 10.4064/aa139-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/

Cité par Sources :