Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Michael Stoll 1 ; P. G. Walsh 2 ; Pingzhi Yuan 3
@article{10_4064_aa139_1_5, author = {Michael Stoll and P. G. Walsh and Pingzhi Yuan}, title = {On the {Diophantine} equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$}, journal = {Acta Arithmetica}, pages = {57--63}, publisher = {mathdoc}, volume = {139}, number = {1}, year = {2009}, doi = {10.4064/aa139-1-5}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/} }
TY - JOUR AU - Michael Stoll AU - P. G. Walsh AU - Pingzhi Yuan TI - On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$ JO - Acta Arithmetica PY - 2009 SP - 57 EP - 63 VL - 139 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/ DO - 10.4064/aa139-1-5 LA - fr ID - 10_4064_aa139_1_5 ER -
Michael Stoll; P. G. Walsh; Pingzhi Yuan. On the Diophantine equation $X^2-(2^{2m}+1)Y^4=-2^{2m}$. Acta Arithmetica, Tome 139 (2009) no. 1, pp. 57-63. doi : 10.4064/aa139-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa139-1-5/
Cité par Sources :