On the structure of sets with many $k$-term arithmetic progressions
Acta Arithmetica, Tome 138 (2009) no. 2, pp. 145-164.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa138-2-4

György Elekes 1

1
@article{10_4064_aa138_2_4,
     author = {Gy\"orgy Elekes},
     title = {On the structure of sets with
 many $k$-term arithmetic progressions},
     journal = {Acta Arithmetica},
     pages = {145--164},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2009},
     doi = {10.4064/aa138-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa138-2-4/}
}
TY  - JOUR
AU  - György Elekes
TI  - On the structure of sets with
 many $k$-term arithmetic progressions
JO  - Acta Arithmetica
PY  - 2009
SP  - 145
EP  - 164
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa138-2-4/
DO  - 10.4064/aa138-2-4
LA  - en
ID  - 10_4064_aa138_2_4
ER  - 
%0 Journal Article
%A György Elekes
%T On the structure of sets with
 many $k$-term arithmetic progressions
%J Acta Arithmetica
%D 2009
%P 145-164
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa138-2-4/
%R 10.4064/aa138-2-4
%G en
%F 10_4064_aa138_2_4
György Elekes. On the structure of sets with
 many $k$-term arithmetic progressions. Acta Arithmetica, Tome 138 (2009) no. 2, pp. 145-164. doi : 10.4064/aa138-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa138-2-4/

Cité par Sources :