Quasimodular forms and Poincaré series
Acta Arithmetica, Tome 137 (2009) no. 2, pp. 155-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa137-2-4

Min Ho Lee 1

1 Department of Mathematics University of Northern Iowa Cedar Falls, IA 50614, U.S.A.
@article{10_4064_aa137_2_4,
     author = {Min Ho Lee},
     title = {Quasimodular forms and {Poincar\'e} series},
     journal = {Acta Arithmetica},
     pages = {155--169},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {2009},
     doi = {10.4064/aa137-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa137-2-4/}
}
TY  - JOUR
AU  - Min Ho Lee
TI  - Quasimodular forms and Poincaré series
JO  - Acta Arithmetica
PY  - 2009
SP  - 155
EP  - 169
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa137-2-4/
DO  - 10.4064/aa137-2-4
LA  - en
ID  - 10_4064_aa137_2_4
ER  - 
%0 Journal Article
%A Min Ho Lee
%T Quasimodular forms and Poincaré series
%J Acta Arithmetica
%D 2009
%P 155-169
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa137-2-4/
%R 10.4064/aa137-2-4
%G en
%F 10_4064_aa137_2_4
Min Ho Lee. Quasimodular forms and Poincaré series. Acta Arithmetica, Tome 137 (2009) no. 2, pp. 155-169. doi : 10.4064/aa137-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa137-2-4/

Cité par Sources :