Representations by quaternary quadratic forms whose coefficients are 1, 3 and 9
Acta Arithmetica, Tome 136 (2009) no. 2, pp. 151-166.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa136-2-4

Ayşe Alaca 1

1 School of Mathematics and Statistics Carleton University Ottawa, Ontario, Canada K1S 5B6
@article{10_4064_aa136_2_4,
     author = {Ay\c{s}e Alaca},
     title = {Representations by quaternary quadratic forms
 whose coefficients are 1, 3 and 9},
     journal = {Acta Arithmetica},
     pages = {151--166},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2009},
     doi = {10.4064/aa136-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa136-2-4/}
}
TY  - JOUR
AU  - Ayşe Alaca
TI  - Representations by quaternary quadratic forms
 whose coefficients are 1, 3 and 9
JO  - Acta Arithmetica
PY  - 2009
SP  - 151
EP  - 166
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa136-2-4/
DO  - 10.4064/aa136-2-4
LA  - en
ID  - 10_4064_aa136_2_4
ER  - 
%0 Journal Article
%A Ayşe Alaca
%T Representations by quaternary quadratic forms
 whose coefficients are 1, 3 and 9
%J Acta Arithmetica
%D 2009
%P 151-166
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa136-2-4/
%R 10.4064/aa136-2-4
%G en
%F 10_4064_aa136_2_4
Ayşe Alaca. Representations by quaternary quadratic forms
 whose coefficients are 1, 3 and 9. Acta Arithmetica, Tome 136 (2009) no. 2, pp. 151-166. doi : 10.4064/aa136-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa136-2-4/

Cité par Sources :