Lattices in $\mathbb Z^2$ and the congruence $xy+uv \equiv c (mod m)$
Acta Arithmetica, Tome 132 (2008) no. 2, pp. 127-133.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa132-2-2

Anwar Ayyad 1 ; Todd Cochrane 2

1 Department of Mathematics Al Azhar University P.O. Box 1277 Gaza Strip, Palestine
2 Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A.
@article{10_4064_aa132_2_2,
     author = {Anwar Ayyad and Todd Cochrane},
     title = {Lattices in $\mathbb Z^2$ and the congruence $xy+uv \equiv c (mod m)$},
     journal = {Acta Arithmetica},
     pages = {127--133},
     publisher = {mathdoc},
     volume = {132},
     number = {2},
     year = {2008},
     doi = {10.4064/aa132-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa132-2-2/}
}
TY  - JOUR
AU  - Anwar Ayyad
AU  - Todd Cochrane
TI  - Lattices in $\mathbb Z^2$ and the congruence $xy+uv \equiv c (mod m)$
JO  - Acta Arithmetica
PY  - 2008
SP  - 127
EP  - 133
VL  - 132
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa132-2-2/
DO  - 10.4064/aa132-2-2
LA  - en
ID  - 10_4064_aa132_2_2
ER  - 
%0 Journal Article
%A Anwar Ayyad
%A Todd Cochrane
%T Lattices in $\mathbb Z^2$ and the congruence $xy+uv \equiv c (mod m)$
%J Acta Arithmetica
%D 2008
%P 127-133
%V 132
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa132-2-2/
%R 10.4064/aa132-2-2
%G en
%F 10_4064_aa132_2_2
Anwar Ayyad; Todd Cochrane. Lattices in $\mathbb Z^2$ and the congruence $xy+uv \equiv c (mod m)$. Acta Arithmetica, Tome 132 (2008) no. 2, pp. 127-133. doi : 10.4064/aa132-2-2. http://geodesic.mathdoc.fr/articles/10.4064/aa132-2-2/

Cité par Sources :